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Abstract—Gesture-related human-computer interaction sys-
tems have been developed with different purposes. Wearable-
based gesture recognition is well studied and considered to be
effective. However, unexpected body movement of a user, such as
walking and turning, is one issue that affects the robustness of
classication. Collecting a sufcient dataset for every unexpected
movement would be time-consuming and labor-intensive. To
reduce the burden on users and address the lack of training
data, we proposed RGC, which is a framework for IMU data
augmentation. RGC adopts Generative-Adversarial-Networks-
based and rotation-based augmentation to enhance the diversity
of the dataset, which helps the classier learn more effective
representations for gesture recognition. We collected a dataset of
21120 arm gesture samples under different kinds of unexpected
movements to evaluate RGC. The experiments showed that our
method provides an 8.8% to 1.1% accuracy improvement for
different SOTA classiers with different original dataset sizes.

Index Terms—Gesture classication, Data augmentation, Gen-
erative Adversarial Networks

I. INTRODUCTION

Designing gesture-related human-computer interaction

(HCI) systems require accurate and robust classication

of gestures. Among multiple sensing techniques that have

been studied in this eld, vision [1], wearable [2] and RF

signal [3] show the most feasibility and usage. Vision-based

and RF-based methods are user-friendly since they work

in a non-contact manner. However, vision-based solutions

have disadvantages of inability to work at non-line-of-sight

scenes and insufcient mobility [1]. RF-based solutions

require dedicated devices and are not robust to environmental

changes [3]. Compared with them, wearable-based solutions

provide mobile and low-cost use.

Among recent studies, different sensors such as IMU and

PPG sensor [4], [5] are attached to a user’s body for capturing

the signal induced by her/his body movement. One problem

that has not been solved is the noise via a user’s unexpected

body movements, e.g., walking, running or turning. This

situation usually occurs in practice, e.g., a user moves the

controller to give a command while her/he is walking in a VR
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game. Assuming that the classier is trained on the clean ges-

ture dataset (without any unexpected movements), the model

accuracy will drop a lot when inferencing on noisy gestures

(with unexpected movements). To solve this problem, we need

to collect an abundant dataset for noisy gestures. However,

collecting such a dataset is time-consuming and labor-intensive

since the noise is diverse. Therefore, the challenge we face is

to train a reliable classier with insufcient data.

Data augmentation alleviated this problem by producing

more data under certain immutability and let the classier learn

more effective representations from data. However, there is no

mature method for the augmentation of IMU data.

In this paper, we explored the potential of using GANs [6]

for IMU data augmentation and further training reliable classi-

ers. We modied the design of DCGAN [7] to let it supports

1D data generation, and use modied total variation loss to

ensure the sample quality. We trained the model with condition

input [8], which makes the category of the synthesizing

samples under control.

We collected a dataset contains ten gesture classes in six

conditions (non-unexpected-movement, walk, turn left/right,

stand up and sit down) from 16 volunteers via three smart-

watches. We evaluated our augmentation framework with three

classication models. Results show that the model accuracy

increased by 8.8% to 1.1% in different settings. We found

that the smaller the original dataset is, the more accuracy gain

will be achieved, and the augmentation enhances models based

on RNN structure more.

We summarize the contributions of this paper as follows:

• To tackle the problem of insufcient training samples, we

proposed RGC, which is a framework for training gesture

classication model with the augmented IMU dataset.

The data augmentation is achieved by a cGAN [8].

• We collected an IMU dataset of 21120 arm gesture sam-

ples to evaluate RGC. Results show that RGC achieves

an 8.8% to 1.1% accuracy improvement for different

classiers with different original dataset sizes.

The rest of this paper is organized as follows. Section II

introduced the motivation of this paper. Section III describes

the details of techniques in RGC including the GANs’ training

and data augmentation. Section IV shows the evaluation setup

and results. Section V introduces the related work. Finally,

Section VI concludes this paper.
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(a) (b)

Fig. 1: Index nger trajectories (a) with none body movement,

(b) when standing up. The trajectory was tracked by LeapMo-

tion.
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Fig. 2: IMU raw data for the gesture ”writing digit 4”

without any unexpected movements (a), with walking induced

noise (b). (c) and (d) stands for data after time-frequency

transformation. The IMU readings are sampled at 100Hz, for

the ease of watching we omit the 10-40Hz part which are also

tiny values.

II. MOTIVATION

We think IMU noise caused by the user’s unexpected body

movement is a key challenge when putting the lab-trained

model into practical use. Existing studies usually collect

gesture samples in a xed scenario, where the user is standing

or sitting steadily. Then, they use machine learning methods

to train a classier that would recognize the characteristics

of certain gestures. However, as we mentioned, a user may

involve unexpected movements such as walking or turning

while performing the gesture. We believe that the impact of

this noise is 1) unexpected movements induce signal changes

and then the IMU data is difcult to recognize; 2) a user may

perform the gesture in a more biased manner when involving

other movements. For example, to maintain balance a user will

slow the gesture while making a step ahead. Fig 1 displays the

index nger trajectories of writing digit ’4’ from one user. We

can see the shape in Fig 1(a) is reasonable because the user was

sitting still, but the gesture in Fig 1(b), which was performed

while the user was standing up, is not shaped like ’4’ at

all. Fig 2 shows the raw acceleration in time and frequency

domains of the same gesture writing digit ’4’, Fig 2(a) and (c)
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Fig. 3: Framework overview of RGC. In the training stage, we

collect samples of different user performing different gestures

involving different unexpected movement, and then use GANs

to generate an augmented dataset, nally we train the classier

with the augmented dataset. In the inferencing stage, we use

the pre-trained classier to recognize the gesture.

stand for the clean sample, (b) and (d) for the noisy examples

with walking-induced noise. Once again, we see very different

shapes and values in the time and frequency domain signal.

To evaluate the effect of noise caused by unexpected

movements, we conducted classication experiments of the

noisy gestures. The gestures contain writing digits ’0’ to

’9’. A state-of-the-art classier Deepsense [9] was adopted

for recognition. Results showed a 19% absolute accuracy

drop when introducing noise of walking, from 95% to 76%.

Besides, the noise of standing up caused a 32% accuracy drop,

sitting down caused 24%, turning left and right caused 28%

and 29%.

In the literature, ltering is considered an effective method

to prevent noise [4], [5]. However, it is not suitable for

this problem since the noise and signals are distributed in

the same frequency band. In Fig 2 (c) and (d), we can see

the FFT coefcients approach zero when the frequency is

above 5Hz, which means regular arm gestures and unexpected

body movements are mainly composed of such low-frequency

components.

To address this practical problem, people need to further

expand the collection of datasets. We use Nbase to represent

the base sample number we collect for each user each gesture,

Nuser and Nges to the number of involved users and gestures.

If we used to collect Nbase ∗Nuser ∗Nges samples to satisfy

the classier training requirement, now we need to collect

Nbase∗Nuser∗Nges∗Nunexpected samples, where Nunexpected

represent the number of classes of unexpected movements.

Collecting such a dataset requires more time and participation

of the user than before. In order to reduce the burden on

users, we explore the potential to use GANs-based methods

to augment the dataset.

III. METHODOLOGY

A brief overview of the proposed RGC framework is shown

in Fig 3 , RGC consists of three components: data collection,

data augmentation and classication component. In section,

868

Authorized licensed use limited to: Zhejiang University. Downloaded on October 16,2022 at 14:11:20 UTC from IEEE Xplore.  Restrictions apply. 



�����

������

	�
����
���

�����

�
���
�

��
��

������

����
�������� �����

������

����

��

��

��������

	�
��������� �� ��

������� ��

�

!���� ���

Fig. 4: Workow of the contional GAN.

we will describe the techniques in detail including the pre-

process, cGAN structure and training.

A. Pre-processing

1) Data segmentation: Before training any model, we iden-

tify the IMU data segment that corresponding to the gesture.

To acquire the exact start and end of the gesture, we use

a threshold-based method. If the arm stays still before the

gesture starts, the accelerometer readings should submit to

local gravitational acceleration, and the gyroscope readings

should be zero. We choose a window w to slide over the

continuous data. Mean and standard deviation are computed

for the acceleration and angular velocity norm separately.

Every time the window slide one point forward, and we judge

the latest point p as a ’still’ point if

| w − [G, 0] | < T1,

σ(w)− [σacc,σgyro] < T2,

p− [G, 0] < T3.

(1)

We use G to represent the norm of gravitional acceleration

(9.8m/s2), and σacc,σgyro stands for the standard deviation

of the sensor random noise. If we nd that

| w − [G, 0] | > T4, (2)

it means the gesture has begun. We go back to pick the

latest ’still’ point as the start of the gesture. Because we track

the still points using a more strict threshold, we could get

a more accurate start point from still to moving compared

with methods which usually use a loose threshold to track

the moving point. This method helps us nd a more complete

trace of the gesture. After the gesture begins, the next still

point we nd means the gesture has ended. We use the index

of this still point minus half of the window as the end index

of the gesture.

The above method works well for segmenting the gestures

without unexpected movement, but for the others not. We

nd that each axis of sensors is affected to varying degrees,

dropping and picking certain axes would still let us get an

accurate segmentation. Using gestures with walking noise as

an example, we observe that acceleration data of all axes are

too noisy to nd the start and end. However, the gyroscope

readings only suffer in Z-axis which is induced by arm

swinging. We can use Y and Z-axis readings of the gyroscope

to achieve segmentation.

7UDQVSRVHG�&RQYROXWLRQDO�/D\HU��

/DWHQW�9HFWRU

7UDQVSRVHG�&RQYROXWLRQDO�/D\HU��

7UDQVSRVHG�&RQYROXWLRQDO�/D\HU��
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/

Fig. 5: Generative model structure of cGAN for IMU data

generation.

B. cGAN-Based Data Augmentation

1) cGAN workow: An overview of the cGAN workow

is shown in Fig 4. Original GANs [6] were designed to

learn the mapping from a distribution Z (usually a Gaussian

distribution) to another distribution X, which belongs to the

training dataset (e.g., images, audio, etc.). Generally, GANs

consist of a generative model (generator) and a discriminative

model (discriminator). The generative model is trained to

generate fake samples which are hard to be distinguished

from real data, while the discriminative model is trained to

determine whether a sample is real or synthesized. The way we

train GANs is what so-called adversarial training. Specically,

during training the discriminative model tries to classify the

input from real data as real, and the input from the generative

model as fake. On the contrary, the generative model tries to

fool the discriminative model by generating more real samples.

The original GANs show a great ability to synthesize data,

but it is hard to be directly applied in data augmentation since

we prefer to generate labeled data. cGAN [8] was proposed to

control the generation process. As shown in 4, the input of the

generative model and discriminative model both contain the

label of the data. The discriminative model now distinguishes

1) if the data is real or generated; 2) if the data matches

the label. The generative model also needs to synthesize data

which matches the label. After the training of cGAN, we can

control the classes of generated samples by feeding specic

labels to the generative model.

2) Model input: The discriminative model accepts the IMU

data and the label as input. After pre-processing, we use up-

sampling and down-sampling via 1D signal interpolation in

the time domain to make the signal have the same length L.
The IMU signal becomes an S×L tensor where S represents

the sensor dimension. For example, S is six if we use both

3-axes accelerometer and gyroscope. The label is a one-hot

vector of length Nges. For the generative model, the input is

a latent vector z sampled from the Gaussian distribution Z and

the label. The vector is of length n and with random values in

(0,1). The label is also the one-hot vector as described above.
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3) Generative model: The generative model tries to map

low-dimensional latent vectors z to high-dimensional sequen-

tial IMU data x̂ = G(z). We choose the generative model

design with transposed convolutional structured [10] as basic

blocks.

We tried to use the 2D transposed convolutional structure

design for generating IMU data, but the result is not good.

The reason could be 1) this structure is more sensitive for

image-like 2D inputs, the S × L IMU data has no effective

shape features to learn from; 2) at the end of the generation,

data of each IMU axis should be processed separately, or it’s

hard for the network to perfect details of generation. This is

not like when we try to extract features from IMU data for

classication, where we use 2D and even 3D convolutional

structures to capture the inside time correlation. Therefore, we

choose 1D transposed convolutional structure since it could

prevent the issues we mentioned above.

In Fig 5 we plot the main architecture of the generative

model. We rst concatenate the input random latent vector and

label, then it passes four sequential 1D transposed convolu-

tional layers since we treat the IMU signal as the multi-channel

1D sequential signal. Specically, the signal at every axis of

every sensor, e.g., the signal of the accelerometer’s X-axis,

represents the one channel 1D sequential signal. The large

kernel and stride increase the perception eld of the transposed

convolutional block, and let the model learn the long-range

correlations inside in signal. The long-range correlation is

more useful since it represents the complete characteristics of

the gesture and potential unexpected movement. We reduced

the kernels into S at the last transposed convolutional layer

and set the length of the output equals to L. That is, we get

an output of shape S × L that will be treated as the data

of a gesture sample. For each but not the last transposed

convolution layer, we use a rectied linear unit (ReLU) [11]

as the activation function and a Dropout layer [12] to enhance

randomness.

4) Discriminative model: The discriminative model tells if

a sample is a real gesture or synthesized from the generator,

and what category the sample belongs to. It requires the

discriminative model to have an ability to extract effective

features. Therefore we inherit the design ideas from the SOTA

human activity recognition classier [9].

Fig 6 shows the structure of the discriminator. We employed

1D, 2D and 3D convolutional blocks to extract features from

the IMU data. Followed by each convolutional layer, we use a

ReLU [11] as the activation function and a Dropout Layer [12]

to enhance randomness. As stated in [13], we do not use any

batch normalization [14] in the discriminative model. Besides,

the input label vector is fed to a fully connected layer for

embedding. We concatenate these two parts and then use

another fully connected layer to nally output D(x). D(x)
is a vector of length 1+Nges, where the rst digit represents

the probability that the sample is real, the remaining digits

represent the probability that the sample belongs to a certain

gesture category.

5) cGAN Training: The training and gradient backpropa-

gation process of GAN are illustrated in Fig 6. we train our

model using the wGAN-GP loss [13] which measures the

Wasserstein Distance (or called Earth-Mover Distance) as

W (PX , PZ) =
1

K
sup

f
L
≤K

Ex∼PX
[f(x)]−Ex∼PZ

[f(x)] (3)

where PX and PZ represent two distributions and f represents

a 1-Lipschitz function. To minimize the Wasserstein Distance,

the loss function for the discriminative model and generative

model are

LD = −Ex∼PX
[D(x)] + Ex∼PZ

[D(x)] + λPenalty(∇D(x)),

LG = −Ex∼PZ
[D(x)].

(4)

In experiments, even when the Wasserstein Distance de-

creases, the generated sample is not ideal in terms of appear-

ance. We found that the generated samples show distinct high-

frequency noise. We think the cGAN tends to learn global

features while relaxes its learning of local features. We could

not choose a low pass lter to process the data since the

up/down sampling changes the original frequency distribution

of the signal. Therefore, we add a new loss function to prevent

glitches. We choose the Total Variation (TV) loss which is well

applied in image denoise [15]. The TV of an image is dened

as

TV =
∑

i,j

((xi,j+1 − xi,j)
2 + (xi+1,j − xi,j)

2)
β

2

(5)

where i, j are the pixel indexes and β is a hyperparameter. In

our case, the TV of IMU signal should be dened as

TVIMU =
∑

s

∑

l

(xs
l+1 − xs

l )
β (6)

where s represents the sensor axis and l represents the time

index. We use the TV loss to punish the generative model if

its output has high TV, and the generative model loss function

now becomes

LG = −Ex∼PZ
[D(x)] + γEx∼PZ

(TV (x)). (7)

where γ is a hyperparameter to control the value of TV loss.

C. Rotation-Based Data Augmentation

We also adopted manual rotation to the IMU signal for

data augmentation. This idea is inspired by SHOW [16] which

rotates IMU signal when recognizing the user’s arm gestures

for alphabet input. SHOW [16] only considers manual rotation

in Y-axis of the smartwatch to prevent the IMU signal bias

caused by the improper wearing position of the user. We

think more rotation conditions should be considered. When

the user’s arm is freely moved in the space, the arm could

have plenty orientation choices for the pre-dened gesture.

We manually rotated the collected sample a (x, y, z) degrees

for X, Y and Z-axis, respectively. We could get the rotation

matrix S from (x, y, z). The augmentation for the sample is

Accr = S ∗Acc,

Gyror = S ∗Gyro.
(8)
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Fig. 6: Discriminative model structure of cGAN.

Acc represents the collected accelerometer readings and Gyro
represents the gyroscope readings. The choice of (x, y, z) are
submitted to Gaussian distribution N ∼ (0,σ), we used ten

degrees for σ in RGC. The rotation-based augmentation is

used during the training of the classier, every time a training

sample is used, we put a random rotation S on it.

IV. EVALUATION

A. Experiment Setup

We employed 16 volunteers to collect gesture data, in-

cluding 4 females and 12 males. All of the volunteers are

university students. In our experiments, we use arm gesture

recognition as an example to evaluate RGC. Therefore, we let

the volunteers wear a smartwatch on her/his wrist to collect the

IMU data of the arm gesture. Because all of the volunteers are

right-handed, they chose to wear the smartwatch on the left

wrist as most right-handed people do. One LG smartwatch

and two Huawei Watch 2 were used for data collection. We

developed an Android App for the smartwatch that can help the

volunteers complete data collection independently. When the

App is activated for recording gestures, it continuously records

the 6-axis IMU data (accelerometer and gyroscope readings)

at a 100 Hz sampling frequency.

We chose a set of gestures, which are writing digits 0 to 9

in the air, to evaluate RGC. We chose these gestures because

they have certain representativeness and practical signicance.

Existing studies have tried to use wearables to recognize text

input (the alphabet) and sign language [4], [16], we think

that the digit is also an effective and common representation

for controlling and communication. We considered ve kinds

of common and representative unexpected movements in our

experiments, which are walking, turning left/right, standing up

and sitting down. Fig 7 displays the setup.

The volunteers were rst asked to perform the gesture when

she/he is standing/sitting still, which means no unexpected

movement, and the digit was repeated at least 20 times. Then

(a) (b) (c) (d) (e)

Fig. 7: Experiment setup of RGC. We collect gesture samples

when the volunteer is (a)walking (b)turning left (c)turning

right (d)standing up (e)sitting down and none movement.

the volunteers were asked to perform the gestures under differ-

ent unexpected movements, each digit under each unexpected

movement was repeated also at least 20 times. In addition, we

collect the IMU data at volunteers’ daily life, which represents

the null gesture class. We randomly sample some segments

from the data and added them to the dataset. Finally we got

16 ∗ 11 ∗ 6 ∗ 20 = 21120 gesture samples.

First, we separated the dataset into ve parts equally ac-

cording to the gesture, user and unexpected movement, which

means every part has the same composition. Then, every time,

we chose two parts as the training set, while the rest three

parts as the testing set, we used RGC’s method to augment the

training set. After that, we trained the classier on the original

dataset and the augmented dataset to evaluate the performance

gain of RGC. We did it C2
5 = 10 times for cross-validation.

Since we also wanted to study the effect of the training

set size. We picked different portions of the training set as

the new training set while removing the rest. We achieved

augmentation based on this reduced training set and then

evaluated the classier trained on such a dataset. For a certain

training set size, we also did it 10 times for cross-validation.

The cGAN was trained on the training set for 2000 epochs

with different batch sizes according to the dataset size. After

training, we let the generative model generates k ∗N samples

where N is the original dataset size and k is a variable which

is according to the original training set size. If the original

training set is small, we generated more samples. As for the

training of the classier, we trained it for 400 epochs over

the training set. Because the augmented dataset size Naug is

bigger than that of the original dataset, which is N , training of

same epochs means that different total amount of data passing

through the two classiers. To maintain fairness of training,

we assumed N is the dataset size of the augmented dataset

and switched to the next dataset after every epoch.

B. Classiers choices

DeepSense. As stated in [9], DeepSense performs well

in HAR tasks. It divides the input sensing data into chunks,

then uses CNNs and RNNs to extract features from the signal.

The original DeepSense takes both the raw data and Discrete

Fourier transform (DFT) coefcients as input, and here we

omitted the frequency domain parts since RGC only achieves

augmentation for the raw data.

BiLSTM.Model of RNN architecture shows a strong ability

to learn representations from sequential data. According to [4],
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the authors used a three-layer-bidirectional-LSTM structure

for sign language recognition via wearables and made great

progress. We also built such a three-layer-bidirectional-LSTM

in the evaluation of RGC.

ResNet-IMU. CNN structure is well applied in image-

related tasks, and it also shows an ability to classify IMU

data [9], [17], [18]. We implemented the ResNet-IMU using

residual blocks [19]. The model is composed of 1) two layers

of 1D residual blocks; 2) two layers of 2D residual blocks; 3)

two layers of 3D residual blocks; 4) a fully connected layer.

Hyperparameters of the three classiers are determined by

a random hyperparameter searching method.

C. Effectiveness

In this section, we evaluated the performance of the pro-

posed methods. First, we evaluate how much performance gain

is provided by our data augmentation, especially when the

original dataset size is different. Then we study the effect of

RGC on different classiers. We discussed the model accuracy

over different gestures. We also evaluated the generality of

the trained classier via leave-one-out cross-validation. We

watched the generated gesture samples to see if mode collapse

occurs.

1) Accuracy gain.: Here we evaluated the accuracy im-

provement of RGC. We used Deepsense [9] model as our

classier. As mentioned in Sec IV-A, every time, we chose

40% of the dataset as the original training set and the rest 60%

as the test set. The cGAN was trained based on the training

set and the generated samples are added to the dataset to train

the classier.

Since augmentation methods usually bring obvious benets

when the original dataset is small [20], we set the original

training set size as a variable to see the impact. For a gesture of

a certain gesture class, a certain user and a certain unexpected

movement, we call it a base sample which contains in-

formation of a triad [gesture, user, unexpectedmovement].
We have 11 ∗ 16 ∗ 6 = 1056 kinds of base samples, and

there are 20 samples of each base sample in the whole

dataset, while 8 samples in the training set. Every time,

for each certain base sample property, which means a cer-

tain [gesture, user, unexpectedmovement], we took m =
1, 2, 4, 8 samples from the training set to form the new training

set. For example, when m = 1, the training set size is

1156 ∗ 1 = 1156. Then we built the augmented dataset of

size k ∗N , where k = 8, 4, 2, 1 as m = 1, 2, 4, 8 and N is the

training set size.

Fig 8a displays the accuracies of the classier trained

1)without any augmentation; 2) with rotation-based augmen-

tation; 3) with cGAN-based augmentation; 4)with both cGAN

and rotation-based augmentation (RGC). We can see that the

augmentation via RGC brings accuracy increase, which are

6.8%, 4.5%, 2.6% and 1.1% in sequence. The results prove

the assumption that when the original dataset is small the

generated samples will bring more diversity and let the clas-

sier learn more general features. cGAN-based augmentation

proposes a 6.4% to 1.1% absolute accuracy increase while

that of rotation-based augmentation is 0.8% to 0.0%, which

means the former contributes most to the accuracy increase.

Compared with only using cGAN for augmentation, the com-

bination of cGAN and rotation leads to a small improvement

when the dataset is small, i.e., m = 1 or 2. When m ≤ 4, the
combination brings no more benets than only using cGAN.

When the base sample number is eight, we see the highest

accuracy which is 94.4% with a standard deviation 0.53%.

To summarize, we think RGC brings accuracy increase for

training a gesture classier. Especially when there is a lack of

data, using RGC is signicantly superior.

2) Improvement of different classiers.: We added new

classiers LSTM and ResNet-IMU that are mentioned in

Sec IV-B, while other experiment settings stay the same as

Sec IV-C1 described.

Fig 8b plots the classiers’ accuracies trained with or with-

out RGC. We can see that RGC brings benets over all three

classiers, where the accuracy gain varies from 8.8% to 1.1%.

DeepSense shows superiority over the three classiers since it

always has the highest accuracy. ResNet shows comparable

performance as DeepSense, and the accuracy gains are also

similar between these two models. However, LSTM shows a

different situation. LSTM presents the lowest original accuracy

(trained without RGC) among the three models and the highest

accuracy gain. When m = 1, the accuracy of LSTM is only

72.0%. After training with the augmented dataset, it increases

to 80.8%, which is basically equal to that of ResNet. From

another aspect, the original accuracy difference of LSTM and

the other two reduces much when m is increasing, i.e., the

training set is increasing. We concluded that among the three

classiers, LSTM is least good at learning robust features

when trained with an insufcient dataset and thus can be

improved by RGC most signicantly.

3) Generality: To evaluate the generality of the trained

model, we adopted leave-one-user-out experiments. Every time

we chose one volunteer as the test volunteer, the training set

removed all samples of this volunteer while the test set only

kept samples of this volunteer. In other words, this volunteer

is unseen in the training set. Otherwise, the dataset setting

remains unchanged as Sec IV-C1. The classier we used is

DeepSense.

Fig 8c draws the accuracies of every volunteer. Compared

with the original average accuracy, we can see an accuracy

drop for most users. However, for 50% of users the accuracy

is still above 90%, and for 75% of users the accuracy is above

85%. Only for three users the accuracy dropped below 80%. In

the worst case, the absolute accuracy drops 22% to 72%. We

analyzed the data and found that the drop is caused by certain

gestures, for example, writing digits ’0’ and ’6’ of volunteer 7

show a less than 30% recognition rate. We believe it is because

this volunteer has unique habits of drawing these two digits

so that these samples cannot be recognized via the classier

trained on the rest volunteers’ data. Since accuracies for most

users do not drop or have a reasonable drop, we think the

results prove the generality of the trained model over different

users. We also think it is always good to add the data of the
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(c) Recognition performance
across different users.

(d) Recognition performance
across different gestures.

target user to the training set.

We also evaluated the classication performance across

different gestures. In Fig 8d we plot the normalized confusion

matrix based on the recognition results in Sec IV-C1 (m = 8).
In this gure we omitted the parts whose normalized ratio is

below 0.01 for a more clear display, those omitted numbers

represent very few mismatches across every categories. From

the gure, we can see accuracies of every gesture are above

90%. For writing digits 2, 3, 4, 7 and 8, the accuracies are

above 95%. Writing digits 0 and 6 tend to be misclassied

as each other, which reduces the recognition rate of both of

them. We believe this is because of the similar shape of the

two digits. It is worth noting that the recognition rate for null

gesture is 100%, which means our unintended gesture is not

likely to be classied as a gesture. However, a few samples of

writing ’3’ are recognized as null gesture.

To summarize, the trained classier shows generality over

different users and gestures.

4) Generated samples by GANs: Fig 9(a) displays four real

sample of writing digit ’0’ and Fig 9(b) displays four generated

samples by the cGAN. First, we can see the real samples and

the generated samples are similar in the shape of the curve at

each axis. Second, we could clearly notice differences among

the generated samples. They have different peaks and valleys,

even the number of peaks are different. Therefore, the cGAN

is not only trying to remember some certain samples but learn

from the gesture distribution, and there is no mode collapse in

our cGAN training. Third, we can see the generated samples

have smooth curves which means the TV loss suppressed the

generation of burrs very well.

V. RELATED WORK

Researchers have put a lot of efforts into wearable-based

gesture recognition, and some works try to address the problem

of sensor noises from unexpected movements.

Gesture recognition with unexpected movements. Sign-

Speaker [4] uses LSTM [21] to recognize sign language and

achieves an 99% accuracy when the user is sitting still. It

leverages an average lter to avoid the inuence of unexpected

movements, but when users are walking or turning, the accu-

racy still decreases around ten percents. ViBand [22] collects

high frequency bio-acoustic signals to recognize nger-level

gestures, and it uses a high-pass lter which prevents the low
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Fig. 9: 6-axis IMU data of gesture writing digit ’0’ which

belongs to (a) real gestures; (b) generated samples by the

cGAN.

frequency noise caused by unexpected movements. However,

this methods can’t be applied to arm-level gestures since the

signal and the noise are in the same frequency band as men-

tioned in Sec II. Float [5] combines both PPG and IMU signals

to detect air-tap gesture, and system performance shows no

signicant decrease in a walking scenario. The limitation is

that this work only evaluated the tapping gesture but not

rich gestures. SynchroWatch [23] measures the magnetic eld

change of a smartwatch and a ring on the thumb and use it to

classify hand gestures. This method could avoid the affect by

unexpected movements since it uses magnetic sensing, but the

requirement of special devices and common indoors magnetic

disturbance will limit its usage in practice. Existing study also

used an additional device enhance the recognition robustness

to noise caused by unexpected movements. It assumes another

smart device such as a smart phone is in the user’s pocket,

so noises of the smartwatch IMU can be canceled through

subtracting the IMU readings of the smartphone. This method

requires somehow strong assumption since the user may not

carry the phone all day, and the phone in the pocket may not

be so tightly attached to the torso which means the sensor

readings could be different from true values of the body.

To summarize, existing studies tried to solve the problem of
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unexpected movement via 1)ltering, and 2) another support-

ing device, which only works for certain gestures and scenes.

In this paper, we would like to collect the gesture data under

different unexpected movements, and coping with the lack of

data.

GANs. One recently proposed framework for the genera-

tion of articial data are generative adversarial networks [6]

which showed groundbreaking results for the generation of

articial images. Originally, vanilla GANs suffered heavily

from training instability and were restricted to low resolution

images. A lot of advancement in regard to stability and the

quality of the generated images has been made with different

regularization methods [13], [24]–[26]. GANs also allow the

intentional manipulation of specic properties in generated

samples [7] and therefore could prove to be a useful tool in

understanding the original data distribution used for training

the GAN. GANs have mainly been developed and applied to

the generation of images and only a few studies investigating

time series were conducted; recently they showed promising

results for the generation of articial audio [27]. The genera-

tion of articial IMU signals would have applications in many

different areas including activity/gesture classication, but to

our best knowledge no research regarding the generation of

raw IMU signals with GANs has been published at this time.

VI. CONCLUSION

In this paper we proposed RGC, which is a framework

targeting practical gesture classication via wearables. We

reconsidered the problem of IMU noises caused by unexpected

movements of the user. When facing the challenge that collect-

ing gesture samples is time-consuming, we proposed a GANs-

based data augmentation method to enhance the diversity

of the dataset and improve the recognition. We evaluated

RGC using arm gestures recognition experiments. The results

showed that RGC provides accuracy gain varies from 8.8% to

1.1% with different dataset sizes and classiers.
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