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Abstract—Multi-exit neural networks have recently boomed in
edge computing to maximize the computing power of different de-
vices. However, many real-time tasks running on edge computing
applications have encountered unpredictable exiting frequently
due to system power outages, high-priority preemption, etc.,
which have been overlooked by multi-exit models until now. To
tackle this issue, it is critical to decide at which branch the multi-
exit model exits so that the unpredictable exit will always come
with desirable results. In this paper, we propose EINet, a sample-
wise planner of real-time multi-exit deep neural networks, which
achieves efficient Elastic Inference with unpredictable exit while
guaranteeing best-effort accuracy on different edge platforms.
Therefore, a given trained deep neural network is first partitioned
into multiple blocks with one exit each by EINet. Then EINet
obtains the block-wise model profiles, including the block-wise
accuracy and inference time. Using the model profiles, EINet
is able to dynamically determine which exits to take during
the inference task for each sample. We introduce Confidence
Score Predictors to dynamically adapt the uniqueness of the
input samples, and the Search Engine to efficiently find the
near-optimal plan during the elastic inference. EINet is evaluated
extensively using multiple DNNs and datasets with unpredictable
exits. Results show that EINet can achieve the highest average
accuracy compared with multiple baselines.

Index Terms—Multi-exit, unpredictable exit, elastic inference,
real-time DNN task, edge computing

I. INTRODUCTION

In recent years, multi-exit neural networks (NNs) have

flourished and emerged frequently in edge computing to better

leverage and coordinate computing capabilities across devices,

the edge, and the cloud [1]–[4]. They were first proposed

in [5] which can produce intermediate outputs at early exit

points to improve the efficiency of deep neural network

(DNN) inference. Subsequently, this idea was widely applied

to cloud-edge collaboration applications. More completely, [6]

classifies dynamic inference on multi-exit NNs into instance-

wise, spatial-wise, and temporal-wise. However, all existing

work related to multi-exit models fails to take into account

the issue of unpredictable exit.

In reality, multiple real-time DNN tasks running simultane-

ously in edge computing applications [7], [8] often encounter

unpredictable exit due to system power outages, preemption

by high-priority tasks (e.g., 5G vRAN [9]), specific user

exit demands, etc. For example, Concordia [9] views the 5G

vRAN tasks as high-priority tasks and allocates dedicated

computation resources to them, while all other workloads will

be preempted unpredictably. Surprisingly, the forced exit real-

time inference tasks were overlooked for a long time.

In order to tackle the unpredictable exit issue encountered

in practice, we want DNN tasks to always produce favorable

results, no matter when being forced to exit. In the literature,

many techniques have been proposed to improve the efficiency

and accuracy of DNNs on edge platforms, such as model

compression [10]–[13], lightweight model design [14]–[18],

CPU/GPU scheduling [7], [8], [19]. More related to this work,

instance-wise dynamic inference [5], [20]–[22] with multi-exit

NNs is a potential technique to solve the unpredictable exit

issue. The basic idea of this technique is to select an exit for

each instance according to the predicted accuracy for each

exit. However, these techniques are still facing the problem of

forced exit before the inference finish. Orthogonal to the above

techniques, we are the first to propose Elastic Inference based

on multi-exit models. The elastic inference is time-insensitive

which can make models generate desirable intermediate results

until it is forced to exit unpredictably. To reach the above goal,

it becomes critical for multi-exit NNs to decide when and at

which branches to exit.

In this paper, we propose EINet, a sample-wise planner

of real-time multi-exit NNs, which achieves efficient Elastic

Inference instead of being forced to exit without any result

while guaranteeing best-effort accuracy on different edge

platforms. Unlike prior approaches, EINet treats the exit time

as random and unpredictable and guides multi-exit NNs to

dynamically select branches for different samples during the

inference to achieve elastic inference. However, there are two

challenges we need to address to realize EINet in practice.

First, how can our planner always guide the model to

get desirable results before being stopped to meet real-time

demand? To accommodate unpredictable exiting, multi-exit

NNs are preferred to be fine-grained with more exits to cope

with the possibility of interruption at any time. However,

executing branches at each exit to preserve intermediate results

may have a time overhead that prevents the inference from

going deeper for better accuracy. To strike the balance between

inference latency and accuracy, the planner needs to plan at

which exits to execute branches based on known information.

We present Search Engine in EINet which can find the near-

optimal exit plan while inferring. The chosen plans will guide

multi-exit NNs to skip (i.e. not execute) several exits in order

to save time and achieve better accuracy.

Second, how can our planner be general to adapt to all

models on various platforms for different input samples? To

understand the characteristics of different models on various

293

2023 IEEE 43rd International Conference on Distributed Computing Systems (ICDCS)

2575-8411/23/$31.00 ©2023 IEEE
DOI 10.1109/ICDCS57875.2023.00009

20
23

 IE
EE

 4
3r

d 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 D
ist

rib
ut

ed
 C

om
pu

tin
g 

Sy
st

em
s (

IC
DC

S)
 |

 9
79

-8
-3

50
3-

39
86

-4
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
IC

DC
S5

78
75

.2
02

3.
00

00
9

Authorized licensed use limited to: Zhejiang University. Downloaded on November 01,2023 at 13:41:14 UTC from IEEE Xplore.  Restrictions apply. 



platforms, we present offline Block-wise Model Profiling to

obtain inference time information. In addition to this, to better

adapt to the features of the input samples, we propose to

train Confidence Score Predictors (CS-Predictors) to enhance

the interpretability of each round of inference. In short, CS-

Predictors and model profiles will make EINet more general.

Eventually, during the inference, general EINet will instantly

update the exit plan according to different samples for the

unpredictable exit.

Our main contributions can be summarized as follows:

• We present EINet, a sample-wise planner for efficient

elastic inference. It can guide real-time AI tasks to run

continuously and give desirable results when they are

interrupted unpredictably instead of being killed by apps.

• We propose Block-wise Model Profiling to profile models

on edge devices offline to understand their characteristics.

Using model profiles, the CS-Predictors can be trained to

adapt to the features of samples.

• We propose Search Engine to find the near-optimal exit

plan online to balance the accuracy and latency. And with

the help of trained CS-Predictors, EINet will continuously

update the exit plans until being forced to exit.

• We implement EINet and conduct extensive experiments

using MNIST, CIFAR-10, and CIFAR-100 datasets to

examine the performance of elastic inference. Evaluation

results show that for the same model on the same

dataset, our framework can improve the overall accuracy

compared to multiple baselines.

The rest of this paper is organized as follows. Section II

presents the work related to the improve the efficiency of

real-time DNN tasks in edge computing. Section III gives the

overview of EINet. Section IV and Section V describe the

design details of two stages in EINet. Section VI evaluates

the performance of EINet and performs numerous validation

experiments, and finally, Section VII concludes the paper.

II. RELATED WORK

In this section, we will introduce existing works related

to real-time AI tasks in edge computing scenarios. Many

existing works in edge computing mainly focus on optimizing

the inference time to make the task complete as quickly and

accurately as possible to ensure real-time performance.

Model Compression. In order to get the inference result

as soon as possible, model compression techniques are widely

used to speed up model inference.

Many model compression techniques have been proposed.

Large DNN models become lightweight by pruning [10] or

quantization. Moreover, knowledge distillation [12], [13] can

retrain a lightweight model from the original DNN model to

achieve comparable accuracy. Instead of compressing large

models, many lightweight models can also be designed di-

rectly, e.g., MobileNet [14], [15], ShuffleNet [16], [17] and

CondenseNet [18]. While speeding up inference time, these

models may suffer from a loss of accuracy.

Based on compressed models or designed lightweight mod-

els, many tasks can finish inference and output results shortly

before the original inference time. However, there is still a

large number of tasks that can not finish the inference and be

forced to quit, these methods still cannot even output a result.

Model Partition and Scheduling. In real-time DNN tasks

scenarios, to avoid the possible preemption problem of mul-

tiple task scenarios, many works [7], [8], [19], [23] per-

formed model partitions on different levels and distribute them

across multiple heterogeneous processors. Through reasonable

model partition and scheduling, the efficiency of the entire

system will be improved. However, reasonable and efficient

scheduling does not work without knowing the actual inference

time. There will still be some DNN tasks that cannot get the

inference result caused by being forced to exit unpredictably.

Multi-exit NNs. Multi-exit models have been widely used

in edge computing, which achieves dynamic inference to allow

samples to exit early during the inference.

There are two main types of multi-exit NNs. The first type

is to add branches to existing models. BranchyNet [5] was the

first to propose adding branches to neural networks. HAPI [24]

uses the trained model to search and insert branches in the

search space through hardware information. FlexDNN [25]

uses the tradeoff formulation to determine the insertion of

branches and search for optimal branch structure by Neural

Architecture Search (NAS). LEIME [3] divides the model into

three blocks with one exit each and deploys them to the end

device, edge server, and cloud respectively by constructing

a joint optimization formulation. The other type is the hand-

tuned multi-exit NNs. Multi-Scaled Dense Network (MSDNet)

[22] builds on top of the DenseNet [26] architecture. It uses a

two-dimensional array of horizontal and vertical layers, which

decouples depth and feature coarseness. Later RANet [27] is

proposed as the extension of MSDNet.

It seems that these models can ensure that at least an

intermediate result can be output when the inference is forced

to exit. For such unpredictable inference time, deciding on

which branch to exit is critical.

Instance-wise dynamic inference [6] has been proposed

to dynamically determine which branch to exit during the

inference task for each sample, since most DNNs perform

inference in a static manner, that is, both the computational

graph and the network parameters are fixed once trained. There

are already related studies on dynamic inference including

adaptively skipping layers or blocks, or dynamically selecting

channels during the inference.

The confidence-based exit plans [5], [20], [21] tune the

confidence threshold without consuming extra computation

during inference. The easy samples can be output at shallow

exits without executing deeper layers. More advanced, the

learned decision models [28], [29] determine the inference

depth for different samples at the beginning of the inference.

Instead of exiting directly, GaterNet [30] and BlockDrop [31]

decide which block to drop based on the input samples.

Moreover, DDI [32] achieves dynamic layers and channels,

but comes with complex and difficult model training.

However, none of the works above achieve dynamic infer-

ence from the perspective of unpredictable exit. If the exited
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Fig. 1: An overview of EINet. EINet generates model profiles

by executing multi-exit NNs during the offline Block-wise

Model Profiling (Section IV) stage. And using profiles, it will

continuously search and update plans by the Search Engine

during the online Elastic Inference (Section V) stage.

branch is not chosen wisely, it will still result in no output.

To better select the exited branch, we propose a completely

new branch-skipping-based planner. EINet is based on multi-

exit NNs and orthogonal to the exit planners mentioned

above. Instead of choosing one branch to exit or executing

all branches, EINet will keep generating wise exit plans and

guide the model to skip several branches during the inference.

Thus, EINet brings a whole new plan generation solution for

elastic inference under unpredictable exit scenarios.

III. OVERVIEW

In contrast to conventional systems or applications that

terminate abruptly, real-time DNN tasks are designed to

gracefully exit and provide more accurate results when un-

predictable exit events occur. To address the challenge of

obtaining accurate inference results in the presence of unpre-

dictable exits, we introduce EINet. EINet serves as a sample-

wise planner of real-time DNNs for elastic inference, which

includes offline Block-wise Model Profiling (Section IV) and

online Elastic Inference (Section V), as shown in Figure 1.

In the Block-wise Model Profiling stage, EINet carries out

the execution of pre-trained multi-exit NNs on edge devices

to obtain block-wise model profiles. In particular, for normal

CNNs that lack multiple exits, EINet introduces additional

branches to turn them into multi-exit NNs (Section IV-A). The

generated model profiles consist of Confidence Score profiles

(CS-profiles) and Execution Time profiles (ET-profiles) (Sec-

tion IV-B). Among them, the confidence score refers to the

softmax value of the output of the model at each exit. The

CS-profiles are utilized to train CS-Predictors, which aims to

adapt the input samples and enhance the interpretability of the

inference process (Section IV-C). Simultaneously, ET-profiles

generated during this stage are employed in the Search Engine

of EINet, facilitating the search for an appropriate exit plan

during the elastic inference process.

In the Elastic Inference stage, for situations where the

inference will be forced to exit at an arbitrary time, EINet

can guide the real-time tasks to submit an accurate result as

quickly as possible. For a given input sample, when the model

encounters a branching point, it generates an incomplete list

of confidence scores, which is then input to the CS-Predictor.

Subsequently, the CS-Predictor predicts the confidence scores

for all subsequent exit points, resulting in a complete score

list. To evaluate the performance of each exit plan, the score

list, along with ET-profiles, is used to calculate the Accuracy

Expectation (Section V-A). Given the vast search space for

finding the near-optimal exit plan, the Hybrid Search is

employed to explore plans with higher performance (Section

V-B). These two algorithms collectively constitute the Search

Engine module of EINet. The specific design details of the

search and update processes will be further described in detail.

Ultimately, the selected exit plan replaces the previous one and

guides the model to execute the subsequent branch. EINet will

execute such search and update process repeatedly until the

inference is interrupted unpredictably.

IV. BLOCK-WISE MODEL PROFILING

EINet can generate block-wise multi-exit model profiles

by offline block-wise model profiling. In this section, we

will introduce the design details of how EINet performs the

branch insertion process that enables the transformation of

conventional models into fine-grained multi-exit NNs. Our

primary focus is on the convolutional neural network (CNN)

architecture. Furthermore, we provide a detailed description

of the recorded information in both profiles, as well as a

comprehensive analysis of the inputs and outputs of the CS-

Predictors.

A. Multi-exit Neural Networks

Since the time of exit is unpredictable, the inference may be

interrupted and forced to exit at an arbitrary time. However,

traditional neural networks with one exit cannot provide results

immediately upon forced termination during inference. To deal

with this, a preferable solution involves employing models

with multiple exits. Thus, EINet is designed to incorporate

pre-trained multi-exit models, enabling them to adapt to the

concept of elastic inference.

Besides, EINet also has solutions for models that are not

pre-trained or multi-exit. Since almost neural networks contain

convolutional parts, we mainly discuss CNNs in this paper.

For normal CNNs without multiple exits, EINet will perform

branch insertion to turn them into multi-exit NNs. For all

295

Authorized licensed use limited to: Zhejiang University. Downloaded on November 01,2023 at 13:41:14 UTC from IEEE Xplore.  Restrictions apply. 



designed multi-exit NNs without training, EINet can also train

them to get block-wise model profiles.

Design of branch insertion. For a normal CNN, there are

many insertion points that can be inserted by branches. Some

branch insertion plans of multi-exit NNs may not make good

use of all computing resources. For example, if the inference

is forced to quit just before the next exit, then the computing

resources between the last exit and the present are wasted.

As a result, the goal of this part is to design an efficient

branch insertion plan for normal CNN. To improve computing

resource utilization, it is feasible to reduce the time between

two exits, which means building fine-grained models.

For normal single-exit CNNs, we just simply treat each

convolutional layer and subsequent operations as a conv part

and add a branch at the end of this part. One conv part and

its branch are collectively called a block. That is, the fine-

grained insertion plan is to add a branch to all convolutional

parts. In particular, for neural networks with residuals, such as

ResNet, etc., we treat one residual as the smallest unit to insert

a branch. The training process backpropagates and updates the

weights of models one by one.

For well-designed multi-exit model architectures [5], [22],

[24], [25], we can also manually adjust their structures to

make them more fine-grained. In this paper, we focus on

MSDNet, the current state-of-the-art hand-tuned multi-exit

model. It consists of multiple blocks with the same classifier

each. The number of blocks and the structure of each block

are both critical for elastic inference. More design details can

be viewed in [22]. To avoid wasting computing resources, the

MSDNet variations we choose has more blocks with fewer

convolutional layer (step = 1,2), and its first block can contain

an appropriate amount of convolutional layers (base = 2,4)

and input channels (channel = 4,8,16) to tradeoff the inference

accuracy and latency. The reasons for these choices are based

on experimental results in Section VI-D1.

Design of branches. Due to the insertion of too many

branches, the trained fine-grained multi-exit NNs will in-

troduce latency overhead. In order to balance the inference

accuracy and latency, the design of branches is also critical.

The goal of this part is to design the appropriate structure of

branches to make fine-grained multi-exit NNs more efficient.

The structure of a branch includes convolutional layers and

fully connected layers. More convolutional or fully connected

layers will inevitably lead to an increase in latency, but

may not benefit accuracy. In order to balance accuracy and

latency, the design of branches becomes critical. Based on the

experimental results of one model in Section VI-D2, we finally

choose the branch with one convolutional layer and two fully

connected layers.

According to the above two design details of multi-exit

NNs, Figure 2 takes VGG-16 as an example, demonstrating

how EINet turns it into a fine-grain and efficient multi-exit

model. EINet takes one convolutional layer and its subsequent

operations as a conv part and takes one convolutional layer and

two fully connected layers as a branch to form a block.

…

…

Conv
BN

ReLU

Conv
2*FC

Block 1

FC
ReLU

FC
ReLU

FC

Conv
BN

ReLU

Conv
2*FC

Block 2

Conv
BN

ReLU

Conv
2*FC

Block 3
Conv
BN

ReLU

Conv
2*FC

Block 13

Conv part Branch Classifier

Fig. 2: Design of multi-exit VGG-16.

B. Block-wise Model Profiles

To better guide the online inference, EINet does the overall

execution of specified models and records their block-wise

profiles. In this section, we will introduce exactly what is

documented in the two previously mentioned profiles.

1) ET-profiles: As we mentioned before, executing the

branch will additionally take up the total inference time, and

the model may not go deeper. To decide whether a branch is

to be skipped or executed, we had better find out how long it

takes to execute the model backbone and how long to execute

each branch.

Since the time to execute each block (i.e. conv part and

branch) is not very different for all samples, we tested

MSDNet with 40 blocks to see the difference in execution

time between the samples. Figure 3 shows the frequency

distribution of execution time of 10,000 samples in each block,

respectively. The latency difference of 90% samples is less

than 0.07ms and the difference of 95% samples is less than

0.1ms. It is worth noting that for the particular structure set by

MSDNet (shown in the upper right corner of the figure), the

variation in inference time varies between different blocks.

Thus, these profiles record the average execution time of all

testing samples inferring on the multi-exit NN for all blocks.

For the same test samples and model, time may vary with the

edge platform. Finally, ET-profiles record the average time to

execute all conv parts Tc and all branchs Tb of a model on a

specific edge platform, which will be used in Section V-A.

Fig. 3: The execution time of 10,000 samples running on

MSDNet. The difference of 90% samples is less than 0.07ms

and the difference of 95% samples is less than 0.1ms.
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2) CS-profiles: Though all input samples are inferred by the

same model, not all accurate inference results can be obtained

at the same branch. That is, the average accuracy of all samples

is coarse-grained and not a good reflection of how well each

sample is inferred on that model. So to better understand

the properties of a model in terms of inference accuracy

of samples, instead of using the average accuracy of all

samples, we applied the confidence score of each sample. The

confidence score here refers to the softmax value generated

by a sample at each branch during the model inference which

is shown in the Labels column of the table in Figure 4.

Thus, these profiles record the confidence scores C of all

testing samples on a specific model. Since the generation

of confidence scores is one-time and does not change with

the platform, there is no need to perform extra tests on

the different edge devices. Once these CS-profiles have been

generated, they are subsequently used to build training datasets

for training block-wise CS-Predictors in Section IV-C.

With all these parameters recorded in ET-profiles and CS-

profiles, the details of searching for and updating the near-

optimal exit plan will be discussed in Section V.

ID Training data Labels

Sample0_0 [51.26, 0, 0] [51.26, 86.02, 99.99]

Sample0_1 [51.26, 86.02, 0] [51.26, 86.02, 99.99]

Sample1_0 [78.77, 0, 0] [78.77, 99.99, 100.0]

Sample1_1 [78.77, 99.99, 0] [78.77, 99.99, 100.0]

··· [ ··· , ··· , ··· ] [ ··· , ··· , ··· ]

[51.26, 0, 0]

[51.26, 86.02, 0]

Sample_0

Sample0_0

Sample0_1

Fig. 4: Construction of training datasets for a three-exit NN.

C. Confidence Score Predictors

Since the output of the model varies with the input sample,

block-wise CS-Predictors will be trained to adapt to the differ-

ent inputs. In this section, we will introduce the construction

of training sets using CS-profiles, as well as the design and

training details of predictors.

Datasets construction. When a multi-exit NN has an

inference result at any branch, CS-Predictor will be called to

execute to predict the confidence score that the future branch

may achieve during the inference. Why this prediction is made

mainly for Search Engine to evaluate the performance of an

exit plan, which will be introduced in Section V-A.

More specifically, training datasets include Training data

and Labels, as shown in the table on the right of Figure

4. The Labels are the confidence scores of all exits, which

are the lists stored in CS-profiles. The Training data are the

confidence scores of a sample at the current and previous exits,

which can be modified from the Labels. The scores at the

subsequent unexecuted exits in the corresponding label list are

set to 0. Taking a three-exit model as an example in Figure

4, it corresponds to two pieces of data for each input sample

and both data pieces have the same label.

... ... ...
...

... ...

Input Output Mask Mask

...

...

...

...

Label

...

...

C1
C2

Cx
0

0

C1
C2

Cx
Cx+1

Cn

Output’

...

...

0

0

0

1

1

1

1

1

0

0

C1’

C2’

Cx’

Cx+1’

Cn’

C1
C2

Cx
Cx+1’

Cn’

...

...

...

...

Fig. 5: Using masks for variable length outputs.

In summary, the CS-Predictors leverage the datasets derived

from CS-profiles during their training phase, enabling them to

effectively predict confidence scores.

Model design. To reduce the time overhead of predicting

the confidence score that the future branch may achieve, CS-

Predictors must be lightweight.

Since both training data and labels are one-dimensional, the

structure of the predictor may not include convolutional layers.

As a result, this model is designed to have only fully connected

layers. The detailed structure is the model on the left in Figure

5. It should be noted that the hidden size of the first two

fully connected layers is crucial for balancing accuracy and

inference time. Our experimental results show that the hidden

size can be selected as 2048, 1024 for models with large input

sizes (over 30), and 256, 128 for smaller input sizes.

Loss function. In general, the output size of the current

models is fixed and cannot be adjusted according to different

inputs. But during the elastic inference, it is meaningless to

predict confidence scores for those branches that have been

executed. In order to predict the confidence scores of the

following branches that haven’t been executed, we introduce a

mask to update the outputs to make the output size dynamic:

O′ = OM + LM, (1)

where O is the inference output of the model, L is the ground

truth of outputs, M is a binary mask list that sets confidence

scores of exits that have output to be 0, and the rest of the

exits to be 1, and M changed the value of 0 in M to 1, and the

value of 1 to 0. Figure 5 shows the detail of the processing

performed on the outputs. The mask is designed to replace

some predicted values with already obtained confidence scores

instead of taking the predicted value. The inference result will

be covered by the confidence score that has been output, so

as to realize the dynamic change of the output size.

Based on the updated outputs shown in Equation (1), we

redefine the loss function (i.e. mean-square error, MSE) during

the process of model training:

L =
len(O′)∑

i=0

(O′
i − Li)

2. (2)
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1
t1t0

[1, 1, 1]

[1, 0, 1]

[0, 0, 1] 1
1 1

T
C0

C1 C2

C3

[1, 1, 1]

0
t

Irregular DistributionEvenly Distribution

t

t

t

T0

C0 C1 C2

C0 C1

conv part
branch

Fig. 6: Accuracy expectation algorithm with different time

distributions. The left is uniform and the right is irregular.

Then bring Equation (1) into Equation (2) to get the

simplified loss function:

L =
len(O)∑

i=x+1

(Oi − Li)
2, (3)

where x indicates the model is executing at the xth exit.

Therefore, the first x values of M are 0, and Equation (3)

can be easily derived. Based on the modified loss function

above, the predictor that can predict the outputs of dynamic

length will be trained for the corresponding multi-exit NN. It

should be noted that the corresponding value in confidence

lists will not be available if the branch is not executed. So we

can only set the value of this exit to be the confidence score

obtained by the nearest previous exit.

For more training details, we use gradient clipping to solve

the possible gradient explosion during the backpropagation of

training. And the learning rate needs to be reduced appropri-

ately for predictors with smaller hidden sizes (e.g. 256) to

ensure that the model training process can converge. During

online elastic inference, the pre-trained CS-Predictor will be

used to predict confidence scores for the Search Engine.

V. ELASTIC INFERENCE

The previous section primarily introduced block-wise model

profiling conducted prior to the online phase. In this section,

we shift our focus to the Search Engine, which is considered

the most important component of the online elastic inference

stage. By leveraging ET-profiles and block-wise CS-Predictors,

the Search Engine can evaluate each exit plan and dynam-

ically select the near-optimal one in an expedited manner.

Subsequently, the chosen plan replaces the previous one and

directs the model inference path accordingly during the online

inference. To effectively implement the Search Engine, we

propose the accuracy expectation algorithm and the hybrid

search algorithm which will be described in later sections.

A. Accuracy Expectation Algorithm

The accuracy expectation algorithm can evaluate the perfor-

mance of exit plans. To better understand the exit plan, it can

be seen as a binary list. Bit 0 means ignore the branch and bit

1 means execute the branch and get the inference result.

To evaluate the performance of such an exit plan, we pro-

pose an expectation calculation method based on probability.

Taking the interrupted time evenly distributed as an example,

Algorithm 1 Accuracy Expectation Algorithm

Input:
1)The statistical time of running conv parts: Tc;

2)The statistical time of running branches: Tb;

3)The confidence score of all exits: C;

4)The ith exit plan of all exits: Pi.

Output:
Performance expectation E.

1: function CAL EXP(Tc, Tb, C, Pi)

2: Initialize E = 0, t0 = 0 and t1 = 0
3: c0 ← C0

4: T ← Tc + Tb

5: for k ← 1 to len(Pi) do
6: t1 ← t1 + Tck

7: if Pik then
8: t1 ← t1 + Tbk

9: E ← E + c0
t1−t0

T

10: c0 ← Ck

11: t0 ← t1
12: end if
13: end for
14: E ← E + c0

T−t0
T

15: return E
16: end function

we divide the entire time of running all convolutional parts and

branches into different intervals as shown on the left of Figure

6. Since the actual inference time is unpredictable, in which

inference time interval it will fall is a probabilistic event.

Each time interval should have its corresponding score.

For many samples, the overall average accuracy of each

exit can be used as the score to calculate the performance.

However, for a single sample, only the confidence scores

can be obtained instead of the average accuracy. With the

confidence scores and the ET-profiles generated in the block-

wise model profiling stage, the algorithm will calculate the

corresponding performance expectation for a specific exit plan.

The calculation equation shows in (4):

E =

len(C)∑

i=0

Citi
T

, (4)

where T is the total execution time, ti is the ith time interval

between the ith output and the (i + 1)th output and Ci is

the confidence score of the ith output. We can see from the

equation that the calculation between two exit plans which

differ by only one bit cannot be simply converted. Because

when the non-output in a plan is changed to output, the time

interval and score for the current exit will change. More

specifically, this change will cause nonlinear unpredictable

changes in the following subsequent time intervals.

Algorithm 1 shows the details of the accuracy expectation

algorithm under the uniform time distribution. The ET-profile

is taken as input, which consists of Tc and Tb as mentioned

in Section IV-B. The confidence score C is actually the O′
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in equation (1) predicted by CS-Predictor during the elastic

inference. For a specific exit plan Pi, the algorithm iterates

over each bit to check whether the corresponding branch

should execute or not. If the branch executes, record its current

confidence score and the elapsed time since the last execution.

Note that the elapsed time includes the time of exits having

no outputs. Then the accuracy expectation can be calculated

by Equation (4).

For situations involving irregular time distributions as de-

picted on the right of Figure 6, the area (i.e. weighted time)

ratio is employed. Just replace the conventional subtraction of

two times on lines 9 and 14 of Algorithm 1 with the integration

of the area between these time points.

Therefore, each exit plan has its corresponding expected

performance. In order to verify the effectiveness of this algo-

rithm, we conducted an evaluation in Section VI-C1 using the

overall average accuracy metric. The results of our evaluation

indicate that the predicted accuracy closely approximates the

ground truth value.

B. Hybrid Search Algorithm

During the searching phase, Search Engine employs a search

algorithm to execute and evaluate the performance expectation

of various exit plans multiple times. The objective is to find

the near-optimal plan within a reduced timeframe. To expedite

this search procedure, we propose the hybrid search algorithm

to identify the most promising exit plan in this section.

Since the exit plans are binary lists, if the multi-exit NN has

n exits, there will be 2n plans. For models with fewer exits,

this number is still considerable. Take the enumeration one

by one, for a model with five exits, the enumeration search

time is negligible (less than 1ms) and the optimum plan will

be guaranteed. However, for models with a large number of

exits, it is challenging to enumerate one with a higher expected

performance and the search time will exponentially increase.

To illustrate, in a model with 40 exits, the enumeration search

time can extend up to approximately 40 days. Therefore, the

enumeration method is optimal when there are few exit plans,

but it is not suitable for all models.

To address the vast search space for models with more exits,

an intuitive solution is to use the heuristic search. However,

the accuracy expectation algorithm is nonlinear as mentioned

in the previous section, which aggravates the difficulty in

constructing valuation functions of the heuristic search. To

explore this challenge, we implement the greedy algorithm

by continuously exploring plans by incrementally increasing

the number of outputs. It is to iterate through all unselected

branches and select the best one with higher plan performance

at a time, provided that all selected branches are known. After

one selection, the same traversal is performed on a new base

and selected until all branches have been selected. Thus, the

search space, as well as time complexity, has changed from

2n to n2. Our experimental results on the model with 40 exits

indicate that the enumeration of 15 selected branches still takes

too long (over 3 days) while enumerating the 20 selected

branches takes the maximum amount of time. However, the

Algorithm 2 Hybrid Search Algorithm

Input:
1)All exit plans of a model: P ;

2)The statistical time of running convolutional parts: Tc;

3)The statistical time of running branches: Tb;

4)The confidence score of all exits: C;

5)The number of outputs for the enumeration search: m.

Output:
A better exit plan P ′.

1: PE ← Enum(P,m)
2: EE ← CALEXP(Tc, Tb, C, PE)
3: P0 ← PE

4: E0 ← EE

5: for i ← m+ 1 to len(C) do
6: PG, EG ← Greedy(P0, i)

7: if EG > E0 then � Update

8: E0 ← EG

9: P ′ ← PG

10: end if
11: P0 ← PG

12: end for
13: return P ′

greedy search can always find all near-optimal plans in the

case of more numbers of selected branches in a very desirable

short period of time.

Based on experimental results and our perceptions, the

greedy search tends to fall into the local optimum in many

cases, making the selection of exit plans non-optimal. To better

take advantage of these two search methods in terms of search

results and time, we propose the hybrid search algorithm, a

two-stage search approach, which combines enumeration and

greedy search. For the first few branches, we use enumeration.

For the small number of selected branches including models

with fewer exits, the search time is little and the optimal results

can be guaranteed. However, for the later branches, we find

the near-optimal exit plans using the greedy search to save the

search time. Thus, based on this hybrid search, we can still

guarantee to find the optimal plan in a very shorter time for the

model with fewer exits and obtain the near-optimal solution

very quickly for the model with more exits.

Algorithm 2 shows the detail of this algorithm. First, enu-

merate according to the number of branches to be enumerated

(line 1). Then the expectation is calculated for the optimal

solution obtained by the enumeration (line 2). This optimal

plan and its expectation are used as the starting point of

the greedy algorithm (lines 3-4). And the greedy traversal

is performed until all branches have been selected (lines 5-

12). Finally, we will get the near-optimal exit plan in less

search time. And in Section VI-C, our evaluation results show

the hybrid search can always find an exit plan with higher

performance expectations under different time distributions.

Using the accuracy expectation algorithm and hybrid search

algorithm, the Search Engine of EINet will dynamically search
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and update the exit plan once a branch is executed with

an output result. And the newly chosen plan will guide the

output of subsequent exits until the inference is finished or

unpredictably interrupted during the online elastic inference.

VI. EVALUATION

EINet is a novel sample-wise planner designed for scenarios

involving unpredictable exits. Unlike traditional approaches

that require selecting a single branch to exit or executing all

branches, it continuously generates wise exit plans, effectively

guiding the model to skip several branches during the infer-

ence. In this section, we will evaluate the overall performance

improvement of EINet based on its above design.

A. Datasets and Setup

Our proposed planner, EINet, is implemented and rigorously

validated primarily in the context of image classification tasks,

utilizing well-established datasets commonly used in the field

of computer vision.
Implementation. We implement EINet with PyTorch. For

offline model training, we train all multi-exit NNs and their

corresponding CS-Predictors on a server utilizing two NVIDIA

GeForce RTX-3090 GPUs. We train each multi-exit NN for

300 epochs and its CS-Predictor for 3000 epochs. The training

learning rates are all 0.001. For online end-to-end execution,

we still perform validation on the same server mentioned

above as the edge devices.

Algorithm Py/C Max (ms) Avg (ms) Min (ms)

Accuracy Python 0.0610 0.0594 0.0584
Expectation C 0.0003 0.0003 0.0003

Hybrid Python 4.9145 4.6599 4.3861
Search C 0.1292 0.1277 0.1267

TABLE I: Difference in Execution Time.

Since the Search Engine during the inference is time-critical,

we implement this part in C to reduce the time overhead for

better performance. Table I shows the difference in execution

time of the accuracy expectation and hybrid search algorithms

implemented in Python and C, respectively. It can be seen

that using C can speed up nearly 100 times. Thus, we call

the calculate expectation function and hybrid search function

through the ctypes library during the elastic inference, which

can achieve nearly 100 times faster than before. The rest of

the implementation remains the same.
Datasets. The classic datasets in image classification we use

are the MNIST, CIFAR-10, and CIFAR-100.

• The MNIST dataset contains 28×28 gray images, com-

posed of 60,000 training and 10,000 testing images.

• The CIFAR-10 and CIFAR-100 datasets [33] contain

32×32 RGB images, composed of 50,000 training and

10,000 testing images, corresponding to 10 and 100

classes, respectively.

We use all training images to train multi-exit NNs and

testing images to generate two profiles in the block-wise model

profiling stage.

Evaluation Metrics. We hope that the inference results of

the real-time task can be as accurate as possible in elastic

inference. To simulate unpredictable scenarios, we set the

unpredictable interruption time to be a distribution of the

total execution time. To eliminate the effect of randomness on

the results, we evaluate a large number of samples multiple

times to get an overall accuracy average and regard it as our

evaluation metric.

Baselines. We selected various baselines to evaluate the per-

formance of EINet from two perspectives.

The first aspect is the comparison with different exit plans

of a wide variety of multi-exit models. This comparison is

to verify that EINet can achieve better overall performance

regardless of the multi-exit model and exit plan.

• For models, we choose B-AlexNet [5] with three exits,

FlexVGG-16 [25] with five exits, fine-grained VGG-16

with 14 exits, fine-grained ResNet-50 with six exits, and

MSDNet [22] with 21 and 40 blocks. Among them, the

design of fine-grained models (i.e. VGG-16 and ResNet-

50) is based on Section IV-A, and the selection of

MSDNet variants will be introduced in Section VI-D1.

• For exit plans, we categorize them based on their be-

havior during inference into static and dynamic plans.

Static plans include predetermined exit points at fixed

percentages, such as 25%, 50%, and 100% of executed

branches. On the other hand, dynamic plans involve

confidence-based exit and EINet with random search.

The other aspect is the comparison with common neural

networks. Since few works consider inference time to be

unpredictable, this comparison is to get how much perfor-

mance gain is achieved by EINet under the most common

circumstances. We choose common CNN models with only

one exit, compressed models, and normal multi-exit models

without planners. Since the inference time of different models

is different, to make the comparison fair, we apply MSDNet,

the state-of-the-art, and use its adaptations as all baselines for

experimental validation.

B. Overall Accuracy Improvement

In this section, we mainly conducted experiments to verify

the performance improvement of EINet from the two aspects

mentioned in Section VI-A.

1) Static and dynamic exit plans: For static exit plans,

Figure 7(a), 7(b) and 7(c) show the overall accuracy of the

selected models on MNIST, CIFAR-10, and CIFAR-100 with

all three static exit plans. Because not all inferences can be

complete, the accuracy is lower than what the model can ul-

timately achieve. In general, EINet can achieve higher overall

accuracy regardless of the multi-exit model and datasets. In

addition, we noticed: (1) for models with fewer exits, the

improvement is not obvious, because although the inference

of CS-Predictors and the search of the Search Engine are fast,

they still take time; (2) for the same model backbone, adding

more branches can improve the overall accuracy in elastic

inference; (3) for models with too many exits, a 100% exit
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(a) MNIST (b) CIFAR-10 (c) CIFAR-100

Fig. 7: Static exit plans on a wide variety of multi-exit NNs. EINet can achieve higher accuracy regardless of models. For the

same model on the same dataset, EINet has about 0.13%-16.5% performance gain compared to the static exit plans.

Datasets Models Statis(%) Ours(%)

CIFAR-10 B-AlexNet 78.43 78.71 (+0.28)
ResNet-50 85.62 86.65 (+1.03)
FlexVGG-16 88.10 88.23 (+0.13)
MSDNet21 80.87 81.11 (+0.24)
VGG-16 88.98 89.12 (+0.14)
MSDNet40 86.38 86.60 (+0.22)

CIFAR-100 B-AlexNet 46.40 46.41 (+0.01)
ResNet-50 62.73 63.29 (+0.56)
FlexVGG-16 65.88 66.03 (+0.15)
MSDNet21 62.25 63.92 (+1.67)
VGG-16 65.63 66.08 (+0.45)
MSDNet40 66.14 67.93 (+1.79)

TABLE II: Accuracy gain of EINet compared to statistics.

plan often results in performance loss due to the overhead of

executing the branches.

Since the selected static plans above are so regular that they

may not adapt to the characteristics of models on specific

platforms, we generate a static optimal exit plan using the

average time and accuracy in profiles. As there is no time

constraint for searching this plan, we use enumeration to find

the optimal. Table II shows the difference in accuracy between

them. EINet can achieve up to 1.79% accuracy gain. Although

for models with fewer exits, there are still small gains.

For dynamic exit plans, we compare other dynamic plans

with confidence score threshold and EINet with random search

methods with EINet. Figure 8 shows the relative improvement

compared to the static plan without skipping (i.e. 100% output

static plan). For two models on two datasets, EINet can

guarantee performance improvement of about 1% to 4%,

but confidence-based plans and EINet with random search

all degrade performance. In addition, for confidence-based

dynamic plans, raising the confidence threshold for early exit

has a better effect on elastic inference, but it still can’t achieve

comparable improvement as EINet.

2) Common neural networks: The common models here

include models with only one exit, compressed models also

with only one exit, and multi-exit models without skipping

Fig. 8: EINet has about 0.79%-4.1% performance gain com-

pared to other dynamic exit plans.

any exits mentioned in Baselines (Section VI-A). Since the

inference latency and final accuracy of different common

models are not the same, we all use MSDNet adaptions to

ensure the same total execution time for fairness.

Figure 9 shows the performance of EINet compared to

common neural network techniques on four model variations.

We conducted experiments 10 times and the result shows that

EINet achieves a 40.4% to 61.5% improvement in accuracy

compared to classic models; a 38.5% to 58.2% performance

improvement compared to the compressed models, and a

0.8% to 1.5% improvement compared to the multi-exit models

without any exit plan. In addition, comparing FlexVGG-16

and fine-grained VGG-16, MSDNet with 21 and 40 blocks, it

can be found that the more fine-grained network has higher

accuracy under the same dataset. Since the accuracy gap of

the last exit is less than 0.5% between MSDNet with 21 and

40 blocks, the overall accuracy of the model with 40 blocks

in elastic inference is improved by about 5%.

C. Evalution of Search Engine

In this section, we mainly focus on the characteristics of

the Search Engine component in the elastic inference stage.

1) Effect of Accuracy Expectation: The core of searching

for the exit plan is the accuracy expectation. To verify the

reasonableness of this algorithm, we compare the calculated

expectation with the truth under different exit plans. Since

different samples have an impact on the output and each
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Fig. 9: EINet achieves over 50% accuracy improvement com-

pared to common neural networks.

inference time is random and unpredictable, we run MSDNet

with 40 blocks on CIFAR-100 five times and take the average

as the overall accuracy truth.

Figure 10 shows the deference between calculated expec-

tation and overall ground truth. The abscissa refers to the

specified number of exits skipped uniformly by an exit plan.

The expectation exhibits variations relative to the truth value,

with fluctuations limited to within a 0.5% threshold. Based

on this observation, it can be inferred that the accuracy

expectation serves as a reasonable metric for assessing the

efficacy of any given exit strategy to a certain extent.

Besides, the result also shows that executing all branches

is not always optimal in elastic inference. For example, the

plan to skip two exits uniformly is better than no skipping. In

addition, to adapt to the characteristic of the input samples,

exit plans should change based on various inputs to improve

overall accuracy.

Fig. 10: The truth of accuracy and the calculated expectation

of MSDNet with 40 blocks on CIFAR-100 are very close.

We did not do experiments related to confidence scores

because it is difficult to find the corresponding ground truth.

Through experiments of average accuracy, we can conclude

that the accuracy expectation algorithm can measure the per-

formance of an exit plan effectively.

2) Effect of Hybrid Search: Since the greedy search al-

gorithm is not ideal in many cases, we use the enumeration

method during the first half of the search and the greedy

algorithm for the following half. We tested the hybrid search

time and expectations for different levels of the enumeration

(i.e. numbers of outputs for the enumeration search) for

MSDNet with 40 blocks.

Fig. 11: Hybrid search performance. As the number of outputs

in enumeration increases, the search time exponentially surges.

Figure 11 shows the search performance. The vertical

coordinate represents the accuracy expectation, which is the

combined effect of the two search algorithms. The horizontal

coordinate represents the number of selected branches of

the enumeration. As this number increases, the enumeration

accuracy increases gradually, and the final search accuracy

also increases slightly. From here we can see that directly

using the greedy search for models with more exits can

not find near-optimal plans. At the same time, the overall

search time increases exponentially. Therefore, it is no need

to enumerate more exits, four or five are enough. The search

time is satisfactory and the results are near-optimal.

3) Different time distributions: In practice, the inference

time of real-time tasks is unpredictable and random. To verify

the time distributions of unpredictable exit on EINet, we

conduct four search algorithms on MSDNet with 40 blocks

and choose evenly as well as two Gaussian time distributions

with the σ of 0.5 and 1, respectively. The average μ is taken

as half of the total inference time. Among all baselines, the

Baseline search refers to multi-exit model inference without

any exit plan, while the Random search is to select the optimal

strategy among 10,000 randomly selected plans.

Figure 12 shows the evaluation results. Different time dis-

tributions do have little impact on elastic inference results, but

the hybrid search can always find a better exit plan. Although

the results are expected, the actual search results are similar to

the current expectation according to the effect of the accuracy

expectation algorithm.

Fig. 12: Accuracy expectation of search methods at different

time distributions. Hybrid can always find a better exit plan.
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(a) The choice of the MSDNet. (b) The design of the branch.

Fig. 13: The design of the branch structure and the multi-exit

model is very critical in elastic inference.

D. Impact of multi-exit NN Design

1) Model structures: In this section, we will clarify why we

choose MSDNet with 21 and 40 blocks. To evaluate the design

of multi-exit NNs, we use different models with different

numbers of blocks, steps, bases, and channels [22]. Results

show in Figure 13(a). We hope that the model can achieve

higher accuracy in a short inference time.

In the case of the same number of steps, bases, and channels,

the more blocks are assigned, the longer the inference time

will be. But more exits will make great use of computing

resources. Therefore, the block of the model should not be

too much or too little, 21 to 40 blocks are almost enough.

The more steps are assigned, the longer the total inference

time will be. Therefore, for a model with 40 or more blocks,

the step is best set to 1. Similarly, the value of the base and

channel is preferably smaller. Thus, we choose MSDNet with

21 and 40 blocks as our evaluation models.

2) Model branches: We use MSDNet to evaluate the de-

sign of branches with different numbers of combinations of

convolutional layers and fully connected layers. The main

structure of MSDNet includes 21 blocks, 2 steps, 4 bases, and

16 channels. The structure of the model classifier includes

one convolutional layer and one fully connected layer, two

convolutional layers and one fully connected layer, one con-

volutional layer, and two fully connected layers, etc.

Results show in Figure 13(b). Following [5], we also find

that it is not necessary to add multiple convolutional layers

to achieve better performance. The overall inference time

increases while the accuracy decreases compared to other

models with one convolutional layer at the same time. For

the fully connected layers, increasing this layer can indeed

increase the final accuracy of the model, but adding too many

will lead to an increase in latency. Thus, for higher overall

accuracy, we choose a combination of one convolutional layer

and two fully connected layers as the design of the branches.

In conclusion, the design of branch structure and branch

position of multi-exit NNs is critical in elastic inference.

VII. CONCLUSION

Multi-exit neural networks emerged frequently in edge com-

puting to maximize the computing power of different devices.

For the common and widespread unpredictable exit, which was

overlooked by multi-exit models, we are the first to propose

Elastic Inference in terms of time to tackle this issue. Elastic

inference can output desirable results, no matter when being

forced to exit, significantly improving the responsiveness of

real-time applications.

In this paper, we propose EINet, a sample-wise planner of

real-time multi-exit DNNs, which achieves efficient Elastic

Inference instead of being killed while guaranteeing best-effort

accuracy on different edge platforms. Unlike prior approaches,

EINet treats the interrupted time as random and unpredictable.

To get an anytime result, it takes advantage of fine-grained

multi-exit NNs. To better guide the model to choose which

branch to exit, EINet profiles the multi-exit NN and trains

the CS-Predictors. With the help of model profiles and CS-

Predictors, EINet will use Search Engine to evaluate the

performance of each exit plan and update the found near-

optimal exit plan dynamically to achieve sample-wise elastic

inference with better accuracy.

Finally, we evaluate EINet and the result shows that the

overall accuracy of EINet is improved by 0.13%-16.5% com-

pared to the static plans, 0.79%-4.1% compared to other

dynamic plans, and over 50% compared to common neural

networks without multiple exits.
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