

Elastic DNN Inference with Unpredictable Exit in Edge Computing

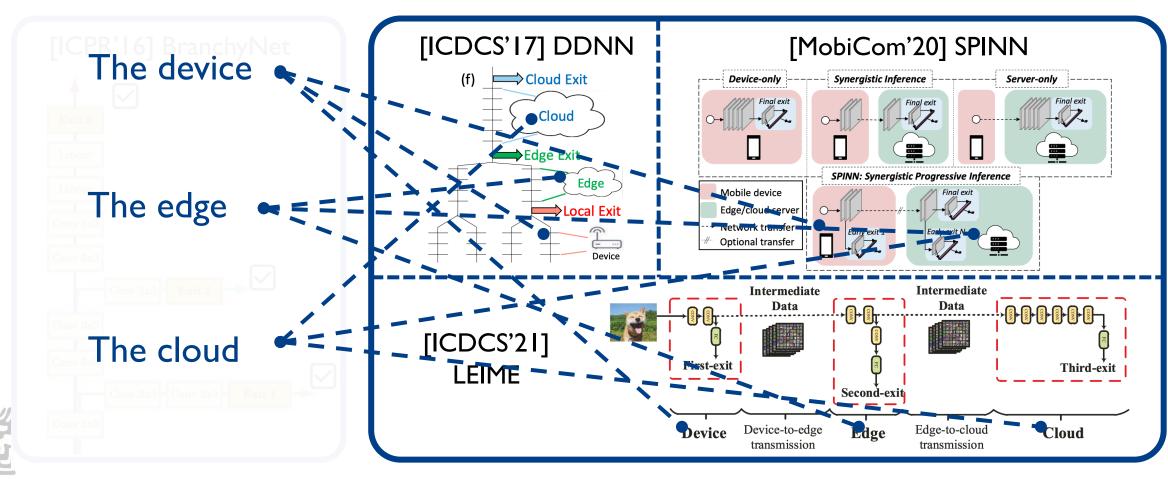
Jiaming Huang, Yi Gao, and Wei Dong

College of Computer Science, Zhejiang University, China

Presenter: Jiaming Huang

Background

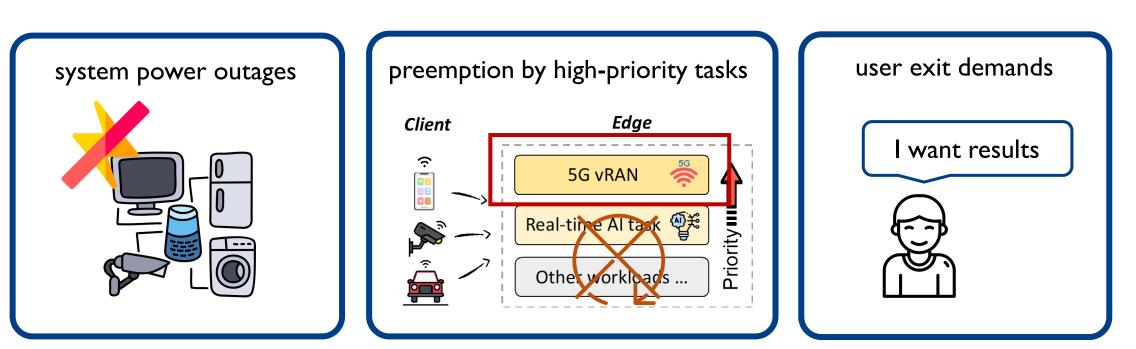
• In recent years, <u>multi-exit neural networks</u> have emerged and flourished in edge computing.



 神ジナ学 EmNets@ZJU zhejiang UNIVERSITY

Background

• However, many tasks often encounter unpredictable exit



[SIGCOMM'21]Concordia

The forced exit real-time inference tasks were overlooked for a long time !

IEEE ICDCS 2023

Job num 0

Job num i

CPU Execution

Prior work for efficient inference

Neural Preproces-Network Postproce-Inference on sing on ssing on CPU GPU CPU DL Task 0 Job 0 DL Task i Job 0 Time Job

Model Partition and Scheduling

- They perform model partitions on different levels and distribute them across multiple heterogeneous processors
 - Higher efficiency of the entire system
 - They use predictable time for scheduling and fail to adapt to unpredictable exits

Job

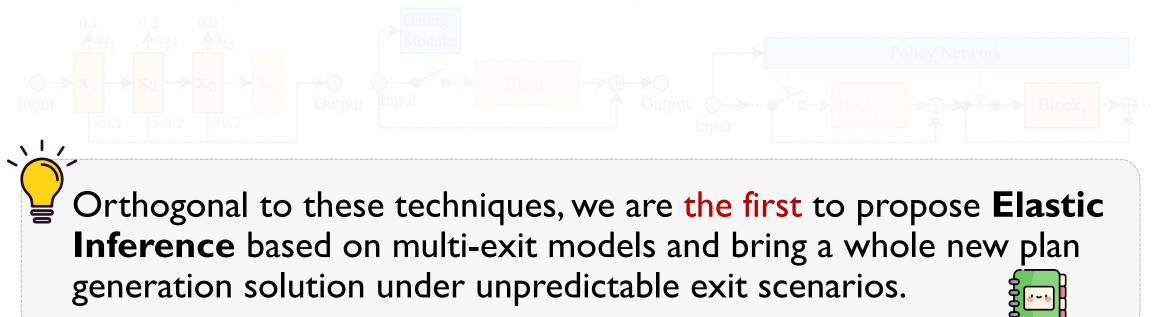
Deadline

Release

GPU Execution

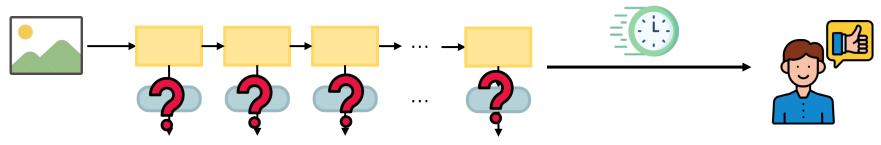
Prior work for efficient inference

- Multi-exit NNs can exit early to output at least an intermediate result
 - Instance-wise dynamic inference



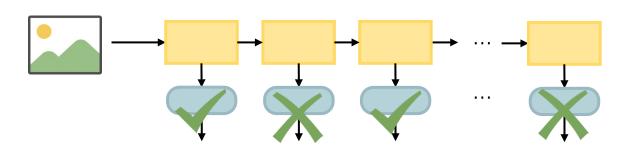
EINet for Elastic Inference

• The **Elastic Inference** is time-insensitive which can make models generate desirable intermediate results no matter when being forced to exit.



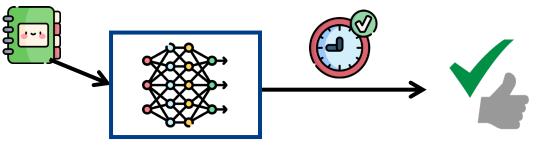
- EINet
 - It is a sample-wise **planner** of real-time multi-exit NNs

• It guides multi-exit NNs to dynamically select branches for different samples

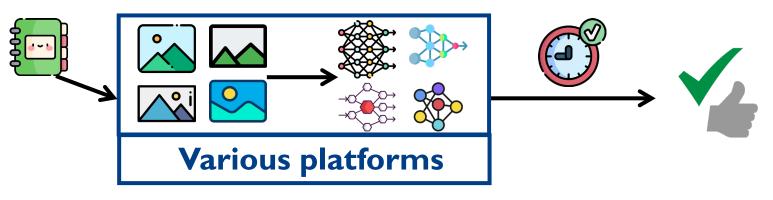


Challenges

• How can our planner always guide the model to get desirable results before being stopped to meet real-time demand?

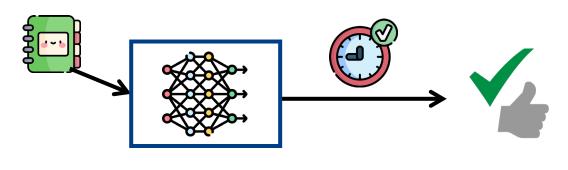


• How can our planner be general to adapt to all models on various platforms for different input samples?

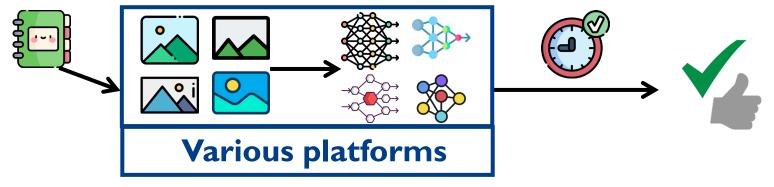


 対 ジナ、学 EmNets@ZJU zhe jiang University

Challenges



• We design **fine-grained** multi-exit NNs and **Search Engine** to strike the balance between inference latency and accuracy

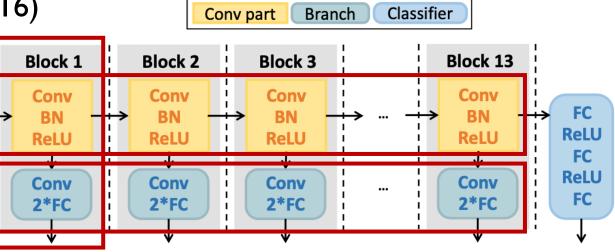


 We present offline Block-wise Model Profiling to profile the characteristics of different models on various platforms and Confidence Score Predictors to better adapt to the input samples

Design - fine-grained Multi-exit NNs

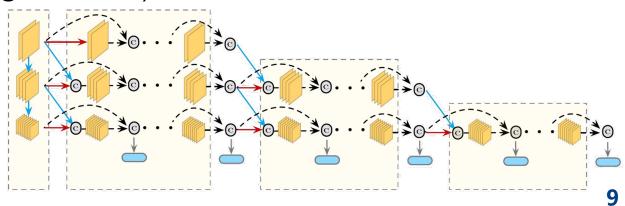
• normal single-exit CNNs (e.g.VGG-16)

- **conv** part: one convolutional layer and its subsequent operations
- **branch**: one convolutional layer and two fully connected layers
- **block**: conv part and its branch



• well-designed multi-exit model (e.g. MSDNet)

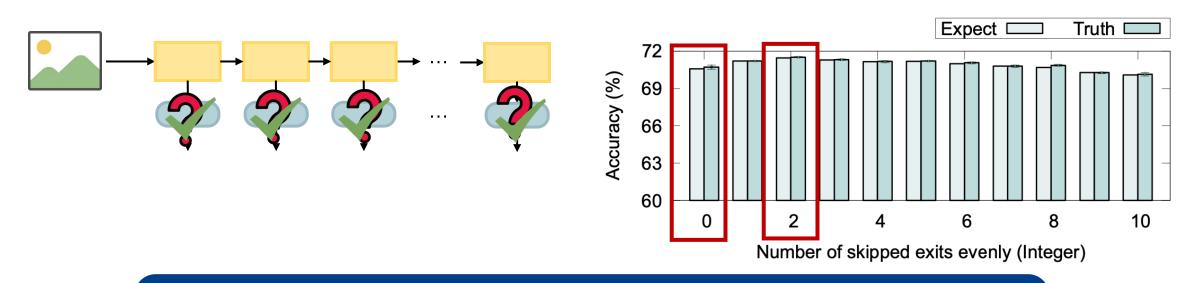
• manually adjust their structures to make them more fine-grained



Design - Search Engine

• Skipping several exits will lead to different accuracy

• performing all the branches may have a time overhead that prevents the inference from going deeper for better accuracy

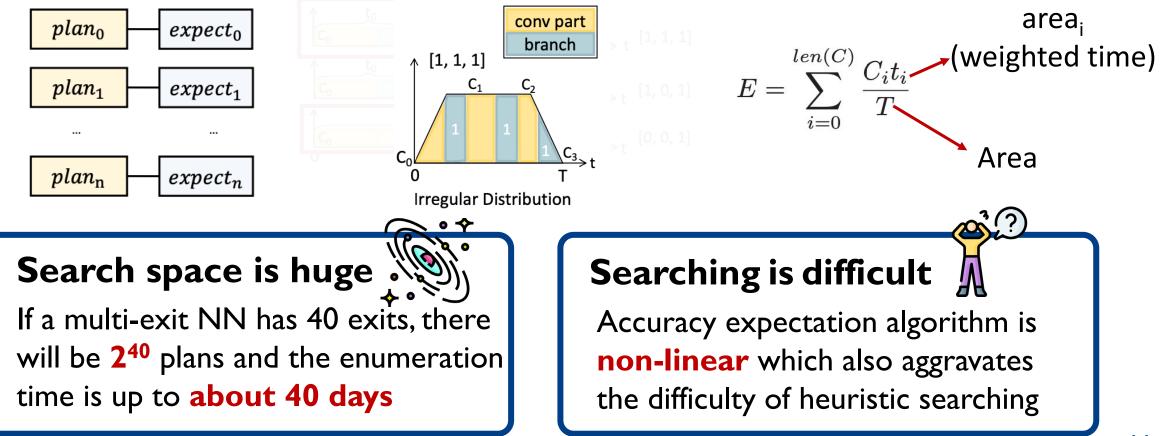


Can we find the **optimal** exit plan to guide models to skip several exits for better accuracy?

Design - Search Engine-Accuracy expectation

• Evaluate each exit plan

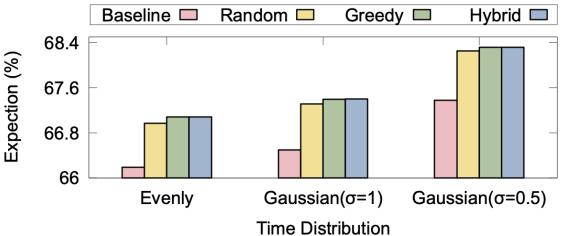
• Unpredictable exit fall in which an inference time interval is a probabilistic event



Design - Search Engine - Hybrid Search

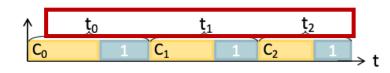
• Greedy search

- It continuously explores plans by increasing branches to execute one by one
- It tends to fall into the local optimum in many cases.
- Hybrid search, a two-stage search approach, combines enumeration and greedy search.
 - use **enumeration** for the first few branches
 - the time is few and the optimal results can be guaranteed
 - use **greedy** search for the later branches
 - find the better exit plan with higher performance in less search time

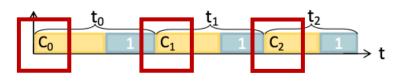


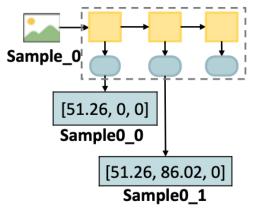
Design - Block-wise Model Profiles

- Adapt to all models on various platforms
 - Execute specified models on specific platforms and records their block-wise profiles
 - Execution Time profiles (ET-profiles)
 - the execution time of each block of models
 - depends on models and platforms



- Confidence Score profiles (CS-profiles)
 - the **confidence scores** of each exit of the models
 - change with input samples

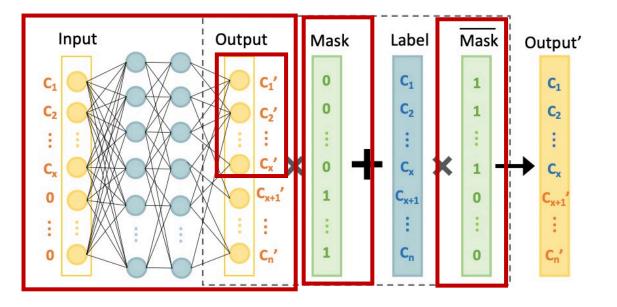




ID	Training data	Labels	
Sample0_0	[51.26, 0, 0]	[51.26, 86.02, 99.99]	
Sample0_1	[51.26, 86.02, 0]	[51.26, 86.02, 99.99]	
Sample1_0	[78.77, 0, 0]	[78.77, 99.99, 100.0]	
Sample1_1	[78.77, 99.99, 0]	[78.77, 99.99, 100.0]	
	[,,]	[,]	

Design - Confidence Score Predictors

- Adapt to the different input samples
 - Since both training data and labels are one-dimensional, **MLP** is suitable.
 - To achieve dynamic output size, we use a mask to update outputs



ID	Training data	Labels
Sample0_0	[51.26, 0, 0]	[51.26, 86.02, 99.99]
Sample0_1	[51.26, 86.02, 0]	[51.26, 86.02, 99.99]
Sample1_0	[78.77, 0, 0]	[78.77, 99.99, 100.0]
Sample1_1	[78.77, 99.99, 0]	[78.77, 99.99, 100.0]
	[,,]	[,]

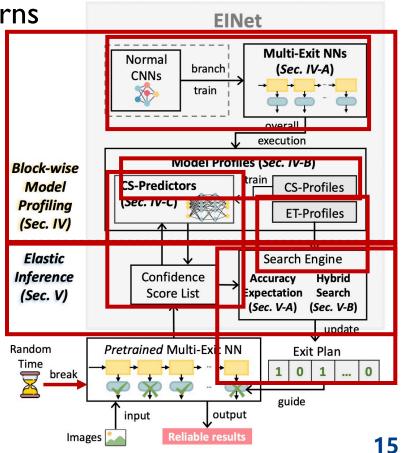
Design of EINet

• Block-wise Model Profiling (offline)

- ElNet generates model profiles by executing multi-exit NNs
 - For single-exit CNNs that lack multiple exits, ElNet turns them into **fine-grained** multi-exit NNs
 - **CS-profiles** : train CS-Predictors
 - ET-profiles : calculate accuracy expectation

• Elastic Inference (online)

- CS-Predictors predict the score during the inference
- EINet will execute such search and update process repeatedly until the inference is exited unpredictably.



Implementation

• Language:

• PyTorch

Py/C	Max(ms)	Avg(ms)	Min(ms)
Python	0.0610	0.0594	0.0584
C	0.0003	0.0003	0.0003
Python	4.9145	4.6599	4.3861
C	0.1292	0.1277	0.1267
	Python C Python	Python 0.0610 C 0.0003 Python 4.9145	Python 0.0610 0.0594 C 0.0003 0.0003 Python 4.9145 4.6599

• Datasets: MNIST, CIFAR-10, CIFAR-100

1.1

- Hardware: NVIDIA GeForce RTX-3090 GPUs
- Metric: Overall accuracy

• Models

- B-Alexnet with three exits
- FlexVGG-16 with five exits
- fine-grained VGG-16 with 14 exits
- fine-grained Resnet-50 with six exits
- MSDNet with 21 and 40 blocks

• Baseline

	Exit	static	25% exits output	50% exits output	100% exits output	statistics near-optimal
	plans	dynamic	90% confidence-based	95% confidence-based	99% confidence-based	EINet with random search
1 1	Comr	non models	classic single-exit models	compressed single- exit models	Multi-exit models without skipping	

10 / 1

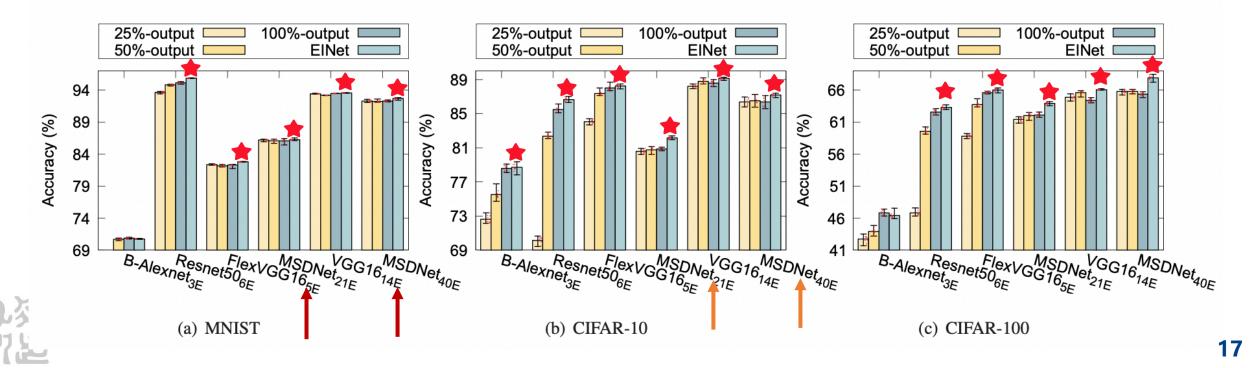
浙ジナ学 EmNets@ZJU

Evaluation

Compared to static exit plans

- EINet has about 0.13%-16.5% performance gain
- the more fine-grained network has higher accuracy

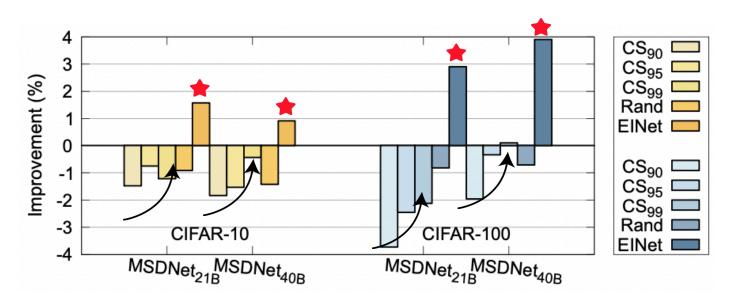
Datasets	Models	Statis(%)	Ours(%)
CIFAR-10	B-AlexNet	78.43	78.71 (+0.28)
	ResNet50	85.62	86.65 (+1.03)
	FlexVGG16	88.10	88.23 (+0.13)
	MSDNet21	80.87	81.11 (+0.24)
	VGG16	88.98	89.12 (+0.14)
	MSDNet40	86.38	86.60 (+0.22)
CIFAR-100	B-AlexNet	46.40	46.41 (+0.01)
	ResNet50	62.73	63.29 (+0.56)
	FlexVGG16	65.88	66.03 (+0.15)
	MSDNet21	62.25	63.92 (+1.67)
	VGG16	65.63	66.08 (+0.45)
	MSDNet40	66.14	67.93 (+1.79)



Evaluation

• Compared to dynamic exit plans

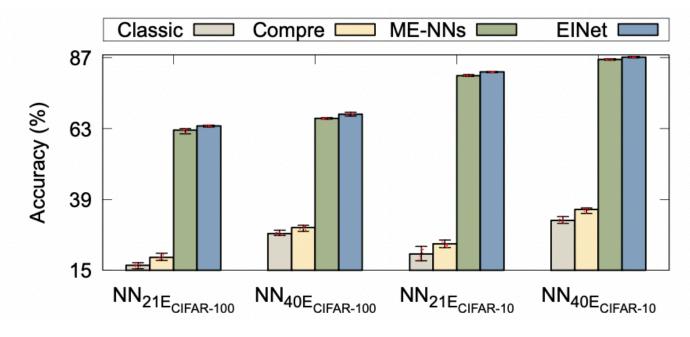
- EINet has about 0.79%- 4.1% performance gain
- for confidence-based dynamic plans, raising the confidence threshold for early exit has a better effect on elastic inference



Evaluation

Compared to common neural networks

- ElNet can achieve over 50% accuracy improvement
 - 40.4% to 61.5% improvement in accuracy compared to classic models
 - 38.5% to 58.2% performance improvement compared to the compressed models
 - 0.8% to 1.5% improvement compared to the multi-exit models without skipping



a sample-wise planner of real-time multiexit DNNs, which achieves efficient Elastic Inference with unpredictable exit while guaranteeing best-effort accuracy on different edge platforms.

Thank you for your attention!

Jiaming Huang huangjm@zju.edu.cn

