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Abstract—Bluetooth Low Energy (BLE) has gained large pop-
ularity as an important infrastructure of Internet of Things (IoT).
Recently, researchers have integrated the TCP/IP stack with
the BLE stack for interoperability, supporting more upper-layer
protocols and applications. However, these works gain extremely
low TCP goodput due to connection event inefficiency when
TCP cooperates with BLE. How to improve the performance
is an urgent problem. This paper proposes TCPle, a performant
TCP-over-BLE stack that presents a novel adaption layer design
bridging the gap between TCP and BLE without violating
their specifications. TCPle improves the efficiency of connection
events significantly by two fundamental mechanisms: connection
event length adaption and connection event maintenance which
correspond to the two root causes of low goodput. The connection
event length adaption mechanism predicts the data size to send
based on an online learning method and updates the connection
event capacity adaptively. This mechanism avoids the long waiting
time of ACK to back to the TCP sender. The connection event
maintenance mechanism prefetches data packets to maintain
the connection event. This mechanism avoids the long waiting
time of data packets when out of the sender after the ACK is
back. We implemented TCPle on nRF52840 DK with RIOT OS
based on lwIP stack and NimBLE stack and conducted extensive
experiments to evaluate its performance. Results show that TCPle

Bluetooth Low Power (BLE) is a low-power wireless tech-

nology that can be used over a short distance to enable devices

to communicate. Since being defined in Bluetooth specification

4.0 [1] in 2010, BLE has gained considerable popularity and

implemented in a broad set of IoT fields such as health [2],

home automation [3], smart industry [4].

As an essential infrastructure of the emerging IoT, most

BLE devices are still hidden behind the multi-radio gate-

ways [5] and connect to the Internet relying on the gateway

conversion. With the proposal of “Web of Things” [6], the

need for communication between smart things and web-based

applications behooves us to re-examine the transport question

over BLE. Intuitively, TCP/IP-over-BLE stack has the follow-

ing benefits: 1) Interoperability. A TCP/IP stack helps BLE to

be interoperable with traditional TCP/IP networks. Using TCP

critically simplifies IoT gateway design; 2) Protocol support.

A number of widely-used IoT application protocols, such as

MQTT [7] and ZeroMQ [8] .etc, are built upon TCP.

There already exist some attempts that build TCP/IP over

BLE. Spörk et al. design BLEach [9], an open-source IPv6-

over-BLE stack based on the uIP [10]. Besides, a number

of embedded TCP/IP stack (e.g., uIP [10], GNRC [11],

BLIP [12]) are proposed to enable diverse applications in-

tegrating embedded IoT devices. However, these works focus

on the architecture design or the optimization of BLE per-

formance itself and are failed to explore the performance of

integrated stack when TCP cooperates with BLE.

We measure the TCP goodput of existing TCP-over-BLE

stacks, finding that the network performance degraded dramat-

ically compared with TCP over other wireless technologies.

The TCP goodput over BLE only achieves 34.4% of the ideal

TCP goodput, much lower than the ratio of TCP-over-802.11b,

TCP-over-802.11ac, and TCP-over-802.15.4 stack (Detailed

in Section II). After careful analysis, we attribute the poor

performance to connection event inefficiency. BLE devices

communicate with each other in non-overlapping fixed-length

slots called connection events. If there are no more data to send

in the BLE stack buffer or the size of data sent reaches the

connection capacity, BLE devices close the radio and wait for

the next connection event to start. If packets arrive at the BLE

stack when the radio is off, they may wait for a long time. In

the worst case, packets wait for a connection interval which

is defined as the time between the start of two consecutive

connection events.

Generally, there are the following two cases that lead to the

connection event inefficiency and harm the network

performance severely when transmitting TCP over BLE: 1)

The actual connection event length is much smaller than the

connection interval. When their difference is larger than the

Round Trip Time (RTT) of TCP, TCP ACKs have to wait in

the BLE stack buffer each time. 2) The connection event where

the TCP receiver sends ACK back ends after the transmission

completes, leading to the subsequent TCP data packets having

to wait in the BLE stack buffer for nearly a connection interval.

(Detailed in Section II).

Based on the above analysis, we propose TCPle, a novel

performant TCP-over-BLE stack design that 1) enables BLE

nodes to interoperable with TCP without violating the speci-

fication of BLE and TCP; 2) outperforms existing TCP-over-

BLE stacks with higher TCP goodput. TCPle adds an adaption

layer between the network layer of the TCP/IP stack and the

L2CAP layer of the BLE stack, making the connection-based

link layer design transparent to the TCP layer. TCPle can

transmit TCP packets smoothly upon BLE, just like they are

transmitted on IEEE 802.15.4 or Ethernet.

TCPle uses two fundamental mechanisms to achieve this:978-1-6654-8234-9/22/$31.00 ©2022 IEEE

1) is lightweight and well-suited for resource-constrained IoT
devices; 2) improves TCP goodput by up to 101.6% compared
with other existing TCP-over-BLE stacks.

I. INTRODUCTION
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Fig. 1: BLE connection between the slave and master. 37, 38, and 39 are the indexes of the primary advertising channels.

connection event length adaption to deal with the long waiting

time of TCP ACK packets when transmitted back to the TCP

sender and connection event maintenance to deal with the

long waiting time of TCP data packets when transmitted out

from the TCP sender. The connection event length adaption

mechanism predicts the size of data to be sent in the following

connection event using an online learning method. Based on

the data size, TCPle updates the connection interval adaptively,

reducing the waiting time of ACK. The connection event

maintenance mechanism keeps connection events. When the

TCP sender is processing ACK packets, the connection event

maintenance mechanism prefetches data packets to keep the

connection event. Once ACK packets are processed, the TCP

sender can send the data packets out quickly. Besides, we

design an RTT estimation module in TCPle, which recovers

the actual RTT of each TCP packet, helping TCP protocol to

perceive the network conditions.

We implement TCPle on nRF52840 DK [13] with RIOT

OS [14] based on lwIP [15], one of the most popular embedded

TCP/IP stacks, and NimBle [16], an open-source BLE stack.

We conduct extensive experiments to evaluate the performance

of TCPle. Results show that: 1) TCPle is lightweight and well-

suited for resource-constrained IoT devices; 2) TCPle achieves

363 kbps, which is within 75.1% of the upper bound and

substantially higher than prior work by up to 101.6%.

In summary, this paper makes the following contributions:

• We systematically study the performance of TCP over

BLE and point out that connection event inefficiency is

the main cause of poor performance.

• We propose TCPle, a novel performant TCP-over-BLE

stack design which improves the efficiency of connection

events by connection event length adaption mechanism

and connection event maintenance mechanism. TCPle can

improve the performance of TCP over BLE significantly

without violating the BLE specification.

• We integrate TCPle into RIOT OS and evaluate its perfor-

mance by extensive experiments. Results show that TCPle

outperforms existing TCP-over-BLE stacks by 101.6%.

II. PRIMER OF BLE

To improve reliability, BLE nodes exchange their data based

on connection. As shown in figure 1, in the time domain, a

connection is split into fixed-size time slices called connection

events. The interval between two consecutive events denoted

as connection interval is fixed. Each connection event follows a

strict packet flow. At the beginning of each connection event,

the master sends a packet to the slave. After receiving the

packet, the slave replies with a packet after a fixed amount

of time called the inter-frame spacing (IFS). This packet

exchange is done at least once in every connection event. If

none of the peers has any data to transmit, they exchange

packets with empty payloads to keep the connection alive

(See connection event 2 in Fig. 1). If more data is ready for

transfer, they transmit packets in the same connection event

until the maximum connection event length (determined by the

connection capacity) is reached or other BLE activities need

to access the radio. The remaining data will be transmitted in

the next connection event (See Connection event 3 and 4 in

Fig. 1). It is worth emphasizing that the Bluetooth standard

defines a set of link-layer control mechanisms that can be used

to update the connection parameters (e.g., connection interval)

on-the-fly after a connection is opened.

BLE provides a reliable link. The connection-based mode

automatically handles packet acknowledgments (ACKs) and

link-layer flow control using a 1-bit sequence number and 1-

bit ACK field in the frame header. Any lost or CRC-error

packet is retransmitted until a valid acknowledgment has been

received.

III. MOTIVATION AND OVERVIEW

With the popularity of the concept that IoT devices should

be seamless to use, many organizations, and researchers are

trying to implement the ecosystem of IP-based protocols over

IoT devices [9], [17], [18]. As an important part of the

ecosystem, a lot of application protocols are implemented

on TCP, e.g., MQTT, AMQP, etc. At the meanwhile, BLE

is one of the most promising wireless protocols for IoT.

Therefore, studying TCP over BLE is very significant to bring

value to BLE moving forward. In this section, we present the

experimental evaluation that guides our design. Specifically,

we explore the upper bound of TCP over BLE on single-hop

goodput first. Then we conduct a series of experiments to show

the giant gap between the actual and ideal goodput. Finally,

we explore the root cause of the poor performance of running

TCP on BLE.

A. Upper ound on ing e-hop goodput

We consider TCP goodput between two nodes over the BLE

link over a single hop without any border router. Here we

consider a data uplink scenario, i.e, the TCP sender is the BLE

slave and the TCP receiver is the BLE master. The ideal TCP

packet transmission over BLE is that: in a connection event,

the slave sends BLE packets carrying the transport layer data

to the master continuously until the current connection event
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TABLE I: The overhead sources of TCP when it upon BLE

Sources L4 Hd L3 Hd L2 Hd L4 ACKs Radio Link
Inverse Gput.

(s/Mb)
0.064 0.040 0.028 0.776 0.375 1.00

TABLE II: Header overhead with 6LoWPAN fragmentation

Header BLE 6LowPAN IPv6 TCP Total
1st Frame 14 B 5B 2-28 B 20-44 B 41-91B
nth Frame 14 B 5–12 B 0 B 0B 19-26 B

ends. In the next connection event, the master sends the BLE

packets carrying TCP ACK to the slave.

Table I lists the various sources of overhead that limit TCP’s

performance when it is upon BLE, based on the ideal scenario

described above. We use the inverse goodput proposed in [18]

to present the overhead of different sources. Lower inverse

goodput represents less overhead. In the table, link overhead

refers to the link capacity. In other words, when there are

no other sources of overhead, TCP throughput is 1/1=1Mbps.

Radio overhead includes SPI transfer to/from the radio (i.e.,

packet copying), inter-frame space, and link-layer ACKs. L2

Hdr, L3 Hdr, and L4 Hdr are the header overhead whose size

has been shown in Table II. Overall, we estimated a 438 kb/s

upper bound on goodput.

B. Experimental study

1) Prototype and methodology: In order to measure the

goodput, firstly we need a TCP-over-BLE prototype. There

already exists some IPv6-over-BLE works, e.g., BLEach [9],

IPv6-over-BLE example in RIOT OS [14]. However, these

works are all based on the embedded TCP/IP stacks which

omit some standard features of TCP. For example, uIP which

BLEach is built on allows only a single outstanding (un-

ACKed) TCP segment per connection, rather than a slid-

ing window of in-flight data. This mechanism reduces the

channel utilization and severely hurts the goodput. In order

to ensure the results are due to the TCP protocol, not the

feature omission of the TCP/IP implementation we used, we

compare the feature set of different embedded TCP/IP stacks

(see Table III) and finally choose lwIP [15] to ground our

study. lwIP provides a full-scale TCP implementation and only

occupies tens of KB RAM and around 40 KB of ROM.

As to the BLE stack, we choose Apache NimBLE [16], an

open-source BLE stack that completely replaces the propri-

etary Soft Device on Nordic chipsets. NimBLE stack imple-

ments full-fledged BLE connections and complies with Blue-

tooth Core Specification 5.0 with low memory requirements

(4.5 kB of RAM, 69 kB of flash).

We implement the prototype on nRF52840 DK based on

RIOT OS and measure the goodput over a link path. In the

experiments, the TCP and BLE parameters are all set to the

default [15], [16] if not specified. The TCP sender is set to

the BLE slave and the TCP receiver is set to the BLE master.

Through the measurement, we try to answer two questions:

• How is the performance of naively running TCP over

BLE?

TABLE III: Comparison of core features among different

embedded TCP stacks.

uIP GNRC BLIP FreeTOS lwIP
Multi segmentation × × � � �
Flow control × × � × �
Congestion control × � × × �
RTT Estimation × � × � �
Keep-alive × × × � �
TCP Timestamps × × × � �
SACK × × × � �
Delayed ACK × × × � �

TABLE IV: The comprasion of TCP goodput on different

wireless technologies.

802.11b [19] 802.11ac [19] 802.15.4 [18] BLE
Physical Rate (Mbps) 11 866.7 0.25 1

Ideal TCP Gput. (Mbps) 7 590 0.095 0.438
Actual TCP Gput. (Mbps) 6 556 0.075 0.151

Ratio 85.7% 94.2% 78.9% 34.4%

• If the performance is poor, can we improve it closer to the

upper bound by directly borrowing techniques designed

for other radios?

2) The goodput of naively running TCP over BLE: We

measure the performance of naively running TCP over BLE.

The offered load of the BLE end node is 600 kb/s. As a

comparison, we also investigate the performance of running

TCP over other wireless technologies. It is worth noting that

the performance of TCP over IEEE 802.15.4 is based on

TCPlp [18]. It is a state-of-art TCP/IP stack for IEEE 802.15.4

which proposes several mechanisms to resolve the poor TCP

performance in 802.15.4.

The results are shown in Table IV. Compared with IEEE

802.11, IEEE 802.11b, or IEEE 802.15.4, the goodput of TCP

upon BLE only achieves 34.4% of the upper bound of TCP

goodput, which is much smaller than that of IEEE 802.11b

(85.7%), IEEE 802.11ac (94.2%), and IEEE 802.15.4 (78.9%).

3) Goodput of running improved TCP over BLE: TCPlp

proposes several performance-enhancing mechanisms (e.g.,

using an atypical Maximum Segment Size (MSS) equal to

5 frames to reduce the header overhead), which are also

applicable to BLE. We port the TCPlp to BLE directly (called

TCPlp-ble) and measure its performance to verify if these

mechanisms can increase the goodput.

Fig. 2 shows the results of transmitting 600-byte data with

different connection event lengths. Fig. 3 shows the goodput

when transmitting data of different size. The connection inter-

val is set to 50 ms. Compared with running TCP over BLE

naively, TCPlp-ble increases the goodput significantly. This

is attributed to its large MSS setting which can decrease the

amount of data transmitted per connection event. For example,

1 kB data is sent in one TCP segment with TCPlp-ble whose

MSS is 1,000 and is sent in one connection event. But, with our

prototype TCP/IP stack, it is divided into five TCP segments

which take two connection events to send.

We also measure the maximum goodput of TCPlp-ble. We

set a big enough buffer size for sender and receiver and offer

800 kb/s flow. Results show that TCPlp-ble reaches 180.2
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kbps, increasing the goodput by 19.3% compared with our

prototype stack. The performance gain comes from the smaller

header overhead. Though an improvement, it is only 41%

of the upper bound. In summary, existing work can improve

performance significantly when transmitting small-scale data.

But its performance is still unsatisfactory compared with the

upper bound goodput.

C. The main causes of the poor performance

In order to find out the root reasons for the poor perfor-

mance, we depict a data transmission through a timing diagram

as shown in Fig. 4 . The shaded areas indicate that two nodes

turn off their radio while the white areas indicate that their

radio is on. The blue arrows present the transmission of BLE

fragmentation carrying data from the upper layer. The green

arrows present the BLE packets carrying TCP ACKs. For

simplicity, we omitted some empty BLE packets related to

the maintenance of the BLE connection.

The transmission takes four connection events. In the first

connection event, the TCP sender sends a TCP segment whose

payload size is equal to the send window of TCP, taking

about 6 ms. And then two BLE nodes turn off their radio

and sleep for about 44 ms since there is no more data in BLE

send buffer. During radio off, the TCP receiver processes the

TCP segment received, generates the corresponding ACK, and

pushes it to the send buffer. When the second connection event

starts, the TCP receiver sends the prepared ACK to the sender.

The sender needs to schedule the pending data according to

ACK, its BLE stack buffer is still empty when it receives the

ACK. Therefore, the second connection event ends with only

one TCP ACK transmission. The sender sends the prepared

data to the receiver in the third connection event and receives

the corresponding ACK in the fourth connection event.

Overall, it takes about 152 ms from the TCP layer to send

the data to receive the last ACK. Up to 92% of the time is

wasted on waiting for the start of the connection event, leading

to inefficient connection events and dramatically harming the

performance.

Based on the timing diagram, we summarize two reasons

for the connection event inefficiency:

• The mismatching between the maximum connection event

length and actual connection event length (e.g., the con-

nection event 1 and 3 in Fig. 4).

Radio ON Radio OFF BLE Frag. 
(Data)

BLE Frag. 
(ACK)

TCP Sender TCP Receiver

500 bytes, 6ms

500 bytes, 6ms

Conn_int=50 ms

Conn. Event 1

Conn. Event 2

Conn. Event 3

Conn. Event 4

Fig. 4: The timing diagrams when TCP sender sends 1,000

bytes of data to the TCP server.

• Connection event ending prematurely due to the empty

sending buffer of BLE stack (e.g., the connection event

2 and 4 in Fig. 4).

D. Overview of TCPle

Based on the above two root reasons, we propose TCPle, a

novel TCP-over-BLE design, aiming to improve the goodput

of BLE nodes equipped with TCP protocol.

When designing TCPle, we strive to achieve the following

three goals:

• Specification-compliant: First of all, TCPle should fol-

low both the specifications of TCP and BLE.

• Lightweight: Given that IoT devices are always resource-

constrained, TCPle should have low memory usage.

• Adaptive to network variation: BLE devices are widely

used in various scenarios. TCPle should provide effective

TCP service for BLE devices adaptively.

The architecture of TCPle is shown in Fig. 5. We add an

additional adaptation layer, decoupling the critical design of

TCPle from the TCP/IP stack part and BLE stack. Based

on this architecture, TCPle can port to various TCP designs

and BLE chipsets with little overhead. TCPle uses two key

mechanisms to deal with the root causes of poor performance

mentioned above:

• Connection event length adaption mechanism for the

gap between the maximum connection event length and

actual connection event length.

• Connection event maintenance mechanism for the

connection event ended prematurely.

We detail these two mechanisms in the following sections.

IV. CONNECTION EVENT LENGTH ADAPTATION

MECHANISM

In this section, we present the connection event length

adaptation mechanism which deals with the mismatching

between the maximum and actual connection event length.

As shown in Fig. 5, this module is located at the BLE

master (i.e., the gateway in most realistic scenarios). There are

three reasons for such design: 1) The connection event length

adaption is always initiated by the master according to the BLE
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specification [20]; 2) Compared with the slave, the masters are

usually more powerful in terms of computing, energy supply,

.etc, which is capable to host the function of predicting data

length (detailed in Section IV-B). 3) The masters are capable

to get more data to predict the data length in multi-connection

scenarios. Next, we detail the mechanism.

First, we model the ACK wait time in the BLE buffer.

According to the description in Section II, if the ACK is not

pushed into the link layer buffer before the end of the current

event, it can only be transmitted on the next connection event.

Its waiting time Tack in the link layer buffer can be presented

as:

T ack
wait =

(⌊
T data

trans +Trtt

Tci

⌋
+1

)
·Tci −T data

trans −Trtt, (1)

where T data
trans is the transmission time of data in link layer, Trtt

is the round-trip time from the BLE gateway to the server,

and Tci is connection interval. In an ideal scenario, the ACK

packets are just ready when the next connection event starts.

In other words, connection interval should approach (T data
trans +

Trtt)/n where n ∈ N
+. Since a smaller connection interval

introduces more control overhead, we set n = 1 in this paper.

Now, the problem has changed to how to get T data
trans and Trtt.

Generally, T data
trans is determined by the size of data sent in the

current connection event and can be given by Ps+Pr
R . Ps is the

size of data packets in the BLE stack buffer, Pr is the size

of retransmitted packets due to the bad link quality and R is

the payload size transmitted per second. Ps is related to the

size of the send window, the capacity of the BLE buffer, .etc,

and Pr is related to the link quality between the BLE slave

and master. We detail the approach of get Ps and Pr in next

section.

Compared with T data
trans which is correlated to highly dynamic

link quality, Trtt is relatively static and can be estimated from

Trtt = TRTT −T data
trans −T ack

trans. (2)

TRTT is the round trip time of data packets in terms of BLE

senders. We introduce how to estimate RTT over BLE in

Section V-A. T data
trans and T ack

trans are the transmission time of data

and ACK packets respectively.

It is worth noting that when connection interval is smaller

than actual sum of T data
trans and Trtt, the ACK packet can not

be sent in next connection event. In the worst case, the ACK

packet has to wait for a connection interval. In order to avoid

a long waiting time due to short connection interval caused by

estimation bias, TCPle set the connection interval as α(T data
trans+

Trtt), after estimating T data
trans and Trtt. α is a coefficient that is

larger than 1 (1.25 in this paper).

TCPle uses connection parameter update which is naturally

supported in BLE specification to update the connection

interval. The master periodically estimates T data
trans and Trtt for

each slave. Since too small or too large connection intervals all

lead to long wait time, master updates the connection interval

if
T data

trans+Trtt

T ′
itval

< 0.8 or
T data

trans+Trtt

T ′
itval

> 0.9, where T ′
itval is the current

connection interval.

Next, we introduce how to estimate Ps and Pr.

A. Size of data to be sent

The traffic pattern, the sending window size of TCP Ssnd ,

Bluetooth software stack that can be used Sble, .etc, together

determine the amount of data to be sent Ps in the next

connection event. Mathematically, Ps can be denoted as

Ps = min(Sdata,Ssnd,Sble), (3)

where Sdata is the data remaining to send which is directly

related to data patterns.

For periodic data packets with a small payload (e.g., MQTT

packet carrying light sensor data), the size of data to be sent is

mainly limited by Sdata. For continuously streaming data, the

bottleneck is the sending window of TCP and the Bluetooth

software stack. For some older devices which only support one

packet per connection interval due to small stack size, Sble is

the bottleneck.

The TCP sending window size is dynamic to some extent,

compared with the traffic pattern and BLE software stack size.

Take TCP Reno as an example. The sending window size of

the next round trip may be double (in the slow start phase)

or half (when detecting network congestion) of the current

window size. TCPle estimates a maximum sending window

Authorized licensed use limited to: Zhejiang University. Downloaded on September 10,2023 at 13:39:14 UTC from IEEE Xplore.  Restrictions apply. 



considering the phase of TCP protocol to avoid the maximum

connection event length being too small to send all data out.

B. Size of the retransmission data

BLE provides reliable transmission in link layer. Given the

frame error rate (FER) e and the bytes of data waiting to

be transmitted Ps, the BLE device has to transmit Ps
1−e bytes

to successfully transmit all data. In other words, Pr can be

denoted as e
1−e Ps. Since Ps represents the total amount of data

in a round, e here represents the quality of the link over a short

period of time, rather than the loss rate of individual packets.

The problem is how to predict e in BLE.

As the physical layer information is directly related to

the channel’s quality, TCPle estimates link quality based on

PHY information intuitively. Since the dynamics of the BLE

link are hard to be captured by a single rigid model, TCPle

uses a stochastic gradient descent (SGD) online learning

algorithm [21] to train a logistic regression classifier (LR) such

that the model can adapt to the changing link conditions.

The input of the model is the historical information available

from past M packets (M = 10 in this paper). The information

includes the Received Signal Strength Indicator (RSSI), Signal

to Noise Ratio (SNR) and frame error rate (FER) when the

packet is received. FER is calculated from the WMEWMA

output. RSSI is captured in every BLE packet. SNR is obtained

by the method in [22]. In order to simplify the algorithm, the

output of the model is the probability that the link quality is

worse than the threshold θ. In this paper, θ is set to 22.5% (i.e.,

25% × 0.9) according to the fault tolerance ratio mentioned

before.

Formally speaking, assume X =<X1...X|M| > represents the

input vector where Xi = [FERi,RSSIi,SNRi], Y is the binary

variable denoting whether FER > θ, the logistic regression

classifier can be expressed as:

P(Y = 1|X) =
1

1+ exp(− f (X))
(4)

P(Y = 0|X) =
exp(− f (X))

1+ exp(− f (X))
(5)

where f (X) = β0 + ∑n
i=0 βiXi, β is a vector of the weight

parameters to be estimated.

Given a training set of N samples, (X1,Y 1)...,(XN ,Y N),
TCPle trains the logistic regression classifier by maximizing

the log of the conditional likelihood, which is the sum of the

log-likelihood for each training example:

l(β) = Y l
N

∑
l=1

logP(Y = 1|Xl ,β)

+(1−Y l) log(P(Y l = 0|Xl ,β))
(6)

To maximize the log likelihood, TCPle uses the gradient,

which is the partial derivative of the log conditional likelihood.

The ith component of the gradient vector is

∂
∂βi

l(β) =
N

∑
l=1

(Y l − P̂(Y l = 1|Xl
i ,β))X

l
i (7)

where P(Y l = 1|Xl
i ,β) is the logistic regression prediction

using Equation (4), (5) and the wight β.

Instead of batch training which optimizes the cost function

defined on all the training samples, TCPle uses SGD, an online

algorithm that operates by repetitively drawing a fresh random

sample and adjusting the weights based on this single sample

only. It performs weight updates on the basis of the gradient

of a single sample Xl ,Y l :

βi ← βi +λ�βl
i (8)

where λ is the learning rate that determines the step size

and how fast the gradient descent converges. TCPle uses a

classical adaptive learning rate algorithm s-ALAP [23] whose

metalearning rate is set to 0.8 to update the learning rate. �βl
i

is the gradient of the lth sample:

�βl
i = (Y l − P̂(Y l = 1|Xl

i ,β))X
l
i (9)

The model is running on the master (an RPI in our evalua-

tion) and estimates the size of retransmission data periodically

(two connection events in our paper). It is worth mentioning

that in practice, TCPle has pre-trained the model based on the

information of 1,000 BLE packets (including control packets

and data packets whose payload size is 100 bytes) offline so

that the model converges faster as it online works. In order that

the data for pre-training covers a wide range of situations,

we change the distance between the slave and master when

collecting packets.

V. CONNECTION MAINTENANCE MECHANISM

In order to save energy, BLE devices turn off their radio

when they have no data to exchange in the BLE stack buffer. In

other words, the BLE controller is ignorant of the data waiting

in the TCP layer unless they are pushed into the BLE software

stack. Therefore, an intuitive idea to keep the current BLE

connection event is to let the TCP sender radio on and keep

sending some packets while processing the ACK received.

In order to further improve the goodput of TCP, TCPle

transmits the data waiting in the TCP layer queue rather

than meaningless packets to maintain the event. The main

procedure is as follows.

In TCP sender, when waiting for the ACK packets, TCPle

generates a data request to prefetch data packets from the

TCP layer and pushes them to the BLE link layer buffer. As

soon as receiving an ACK in the next connection event, the

BLE controller sends these packets to maintain the connection.

According to our experimental measurements, it usually takes

about 2-3 ms for the TCP sender to process the received ACK

packet. If the remaining data is not enough for the sender to

send for 2-3 ms, TCPle generates some empty packets, which

will be discarded in the adaptation layer of the receiver. The

sender keeps a counter that records the number of packets sent

to the receiver in advance. Suppose the number is larger than

the upper bound of sending window of the next round trip

(e.g., 2 · snd when the slow start of TCP Reno), TCPle will

send all empty packets to maintain the connection event. The

purpose is to relieve the storage pressure of the TCP receiver.
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TABLE V: Waiting time table recording the time that the data

packet waits in the buffer of the adaptation layer

IP Address Seqno Waiting Time (ms) Time of entry
2001:250:...:4310 79 23 36734

When the ACK is processed, if data sent in advance is

greater than or equal to the new sending window snd′, TCPle

stops prefetching data. If it is less than snd′, TCPle continues

to send data until the amount of data sent reaches snd′ or

no more data to send. When finishing sending data, the TCP

sender sends a notification packet containing snd′ to the TCP

receiver. Meanwhile, the counter minus snd′.
In TCP receiver, TCPle stores the data packets in the

receiving buffer in the adaptation layer. When receiving the

notification packet, TCPle sends snd′ packets from the buffer

to the upper layer and forwards them to the destination.

A. RTT calibration

Round trip time (RTT) is an essential indicator of the

network condition, having been widely used in various TCP

schemes [24]–[27]. However, when TCP works upon BLE, the

actual RTT is “hidden” due to the connection-based commu-

nication of BLE and data prefetching. Specifically, the ACK

packets are likely to wait for a while at the TCP receiver’s link

layer for the start of the connection event. The waiting time is

random and unpredictable. Besides, some packets prefetched

may wait for at least one RTT in the receiver’s receiving buffer

located at the adaption layer if the prefetched data size is larger

than the new sending window size. Thus TCP sender is hard to

judge the root cause of the RTT increment— lousy network

condition or long waiting time at peer’s link layer or data

packets transmitted in advance— when TCP over BLE.

In order to solve the above problem, TCPle adds a sub-

module ”RTT calibration”. In the TCP receiver, TCPle builds

a waiting time table (as Table V) to record the duration Twdata

of each packet from entering the buffer to leaving. For the

outgoing packets, TCPle first judges whether it is an ACK

packet using cross-layer information. If it is, TCPle estimates

the waiting time Twack based on the state of its BLE controller.

Then TCPle traverses the waiting time table and finds out the

waiting time of the data packet corresponding to the ACK

according to the ”ACK” fields in the packet’s header. Once

found, TCPle gets the data and deletes the item from the table

to save the resource. Those items that stay in the table for

longer than the threshold (2.5 · RTO in this paper) will be

deleted as well. TCPle calculates the total waiting time Twtotal

by Twdata+Twack and fills it into the adaption layer header. The

new data packet structure is shown in Figure 6.

At the TCP sender, the adaption layer extracts the total

waiting time for each incoming ACK packet and then passes it

to the upper layer with the data packet. The TCP layer obtains

the real RTT RT Tr by:

RT Tr = Ts −Tr −Twtotal (10)

where Ts is the timestamp that the data packet was sent and

Tr is the timestamp the ACK is received.

VI. EVALUATION

A. Implementation

Hardware and OS. We implement TCPle on nRF52840

DK, which features an ARM Cortex TM-M4 with 512KB

RAM and 1MB flash. We also build a BLE gateway compris-

ing of a Raspberry Pi (RPI) 3 connected with the nRF52840

DK. The adaption layer and the above layer are running on

the RPI while the BLE stack is running on the nRF52840 DK.

We originally implement TCPle on RIOT OS which provides

basic integration of NimBLE and lwIP. We modify Nimble to

get the PHY and MAC layer information and modify lwIP to

enable the adaption layer to prefetch data and get the sending

window size.

Maximum segment size (MSS) setting. In traditional

networks, it is customary to set the Maximum Segment Size

(MSS) to the link MTU (or path MTU) minus the size of the

TCP/IP headers. However, BLE frames (251 bytes) are much

smaller than frames in traditional networks (1500 bytes). The

TCP/IP headers consume nearly half of the frame’s available

MTU, incurring large header overhead. Like TCPlp, we also

choose an MSS larger than the link MTU admits, relying

on fragmentation at the 6LowPAN layers to decrease header

overhead. However, using an excessively large MSS decreases

reliability because the loss of one fragment results in the loss

of an entire packet. Existing work [28] has identified this trade-

off. We choose an MSS of about five frames in the evaluation,

which is proved effective in most scenarios.

Setup. We compare TCPle with BLEach [9], TCPlp [18]

(See Section III-B1) and Connected Home over IP (CHIP, now

changed to Matter) [17]. CHIP is a new standard for cross-

vendor networking of devices in the smart home, which is

jointly proposed by Amazon, Apple, Google, Comcast, and the

ZigBee Alliance at the end of 2019. The specification supports

BLE device communication based on IP. It is built on lwIP

as well. Several parameters may influence results, e.g., the

initial size of the TCP sending window, the capacity of the

packet queue, etc. When not specified, we set the common

settings according to default values in specifications or stacks.

Specifically, the initial size of the TCP sending window is set

to 2· MSS. The capacity of the packet queue is 8· MSS. The

congestion control algorithm is Reno. We disable the delayed

ACK in TCP/IP stack. The size of the BLE stack buffer is

1,280 bytes. We record packet transmission and reception

events with their timestamps for later analysis.

B. Overhead

1) Memory footprint: We quantify the memory footprint

of TCPle on slave and master devices in terms of RAM

and ROM usage. Table VI shows TCPle’s ROM and RAM
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TABLE VI: ROM and RAM usage (kB) of TCPle. “RAM S”

means static RAM usage and “RAM D” means dynamic RAM

usage.

TCP/IP Adap. BLE Total
TCP sender

&
BLE slave

ROM 40.766 9.703 75.278 125.747
RAM S 8.061 7.334 3.009 18.404
RAM D 6.296 2.214 2.019 10.529

TCP receiver
&

BLE master

ROM 40.766 15.692 75.278 131.736
RAM S 8.061 8.172 3.009 19.782
RAM D 4.016 4.022 3.215 11.253

Fig. 7: Breakdown of TCPle’s processing time per layer when

serving TCP transmissions of varying payload length.

usage. The ROM usage of TCPle on the slave and master is

125.747 KB 131.736 KB while the maximum RAM usage

is 28.933 kB and 31.035 kB. The difference in memory

usage between master and slave comes from the connection

event length adaption mechanism. Compared to the original

prototype stack, TCPle increases up to 15.692 kB ROM and

12.194 kB RAM. Although increased memory usage, TCPle

is still very lightweight and well-suited for many resource-

constrained embedded IoT devices.

2) Processing overhead: To evaluate the processing over-

head, we measure the duration of TCP transmissions with

different payload sizes from the slave to the master using

and break down the time spent in each network layer. We

average the values from 100 experiments. The results are

shown in Fig. 7. The largest fraction of time is spent in the

BLE controller performing the actual data transmission in the

TCP sender. For example, the BLE link and physical layer

take up to 64.9% of the total time when transmitting 64-byte

packets. When transmitting 256 bytes TCP packets, due to

the limitation of MTU, the packets are fragmented to send

and the proportion increases to 67.6%. The main cause of the

long processing time is that the packet waits for the connection

event to start in the BLE stack buffer for a duration of time.

According to the connection event length adaption algorithm,

TCPle set the connection interval to 7.5 ms, the minimum

value defined in the BLE specification. Since the data arrive

at the BLE stack buffer randomly, they have to wait about

7.5/2= 3.75 ms inevitably. It is worth noting the new modules

only introduce about 8% processing time. In the TCP receiver,

the time spent in the adaption layer increases compared with

the sender because of the overhead of the connection event

length adaption mechanism which is only deployed in the BLE

master. However, for the complete transfer process, the newly

introduced processing time is insignificant and worthwhile,

which will be proved in the below evaluation.

C. TCPle performance over a single hop

In this subsection, we evaluate TCPle’s performance over a

single hop. The BLE slave acts as the TCP sender while the

BLE master acts as the TCP receiver.

1) Maximum goodput: We increase the offered load from

the TCP sender to reach the maximum goodput. We set a

big enough buffer size to prevent that TCP exhibits “stop-

and-wait” behavior due to the small flow window. The TCP

sender sends data in a 50-seconds interval. We get the average

goodput across all intervals.

The results are shown in Fig. 8. For a small offered

load, the average goodput increases linearly. Once the offered

flow exceeds a critical value, the average goodput no longer

increases, in which case we believe we have reached the

maximum goodput of running TCP over BLE on a single

hop. The maximum goodput of TCPle is 363 kbps, reaching

75.1% of the upper bound (introduced in Section II). The

difference from the upper bound is likely due to the network

stack processing, fault-tolerance of TCPle, and other real-

world inefficiencies.

Compared with TCPlp-BLE, CHIP, and BLEach, TCPle

reaches about 2.0×, 2.3×, and 14.5× goodput improvement,

respectively. The reasons are three-fold: 1) TCPle, CHIP,

and TCPlp-ble support multiple segments and pipeline data

packets, increasing the throughput; 2) When transmitting data,

TCPle estimates the connection event length and decreases the

connection interval to 7.5 ms, which is the minimum, reducing

the average waiting time to 3.75 ms. The connection interval

of TCPle and BLEach is always 50 ms, introducing an average

waiting time of 25 ms; 3) BLEach, TCPlp-ble, and CHIP close

their radio for nearly 50 ms once receiving ACK back. On

the contrary, TCPle makes the sender send data, improving

connection event efficiency.

2) Resilience to wireless loss: In this subsection, we eval-

uate TCPle in terms of dynamic link quality. One BLE

slave sends 1,000 bytes data to the master per 100 ms. We

inject uniformly random BLE package loss at the master and

calculate the average goodput of every transmission.

The result is shown in Fig. 9. As the loss rate increases,

the goodput of TCPle drops up to 20.5% while the goodput

of BLEach, TCPlp-ble, and CHIP drops 0.4%, 5.1%, and

4.5%. The relatively big decrease of TCPle comes from the

connection event length adaption mechanism. If the BLE

packets are lost or in error, the slave retransmits them. In

this case, TCPle increases the connection interval to provide

a bigger connection event capacity, which introduces more

waiting time. As to TCPlp-ble and BLEach, since their con-

nection event capacity is redundant initially, their goodput

drops are relatively small. Though a greater decline, TCPle’s

performance is always better than BLEach and TCPlp-ble due

to the existence of the connection maintenance mechanism

which fastens the transmission.
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Fig. 11: A testbed of TCPle for real IoT cases.

3) Fair channel sharing: BLE is a star topology network.

The master device “manages” the connection, and can be

connected to multiple slaves. We run an exemplary BLE

system consisting of a master and three slaves to evaluate

TCPle’s performance with a different number of slaves joining

the network. We have two experimental setups. In Setup 1,

three slaves are all implemented with TCPle. In Setup 2, Slave

A runs TCPle, and Slave B and Slave C run naive BLE stack

(i.e., NimBLE). Slave B and Slave C connect to the master in

the 20s and 40s respectively. The offered flow of each slave

is 200 kb/s. We calculate the goodput of each slave over time.

Fig. 10 shows the results. The upper figure is the result

of the first setup while the lower is the second setup. Since

the connection events of different slaves may conflict, the

goodput is smaller than the offered flow when several BLE

slaves coexist. As Fig. 10 illustrated, TCPle provides fairness

between different flows. Specifically, Jain’s Fairness Index

(JFI) 1 of Setup 1 is 0.99 while JFI of Setup 2 is 0.98. This

is because the delay caused by connection event conflict in

the master is transparent to TCPle. TCPle will not adapt its

connection parameters in this case and therefore promise its

fairness to some extent when TCPle nodes coexist with legacy

BLE nodes.

D. Real IoT use cases

In this section, we evaluate TCPle with two real IoT use

cases. We build a testbed as shown in Fig. 11. Several

nRF52840 DKs communicate with the BLE gateway, which

is comprised of Raspberry Pi and nRf5840 DK through BLE.

The gateway routes the TCP packets to the cloud by Ethernet.
1) Sense-and-send application scenario: We begin with a

common sense-and-send paradigm, in which devices period-

ically collect sensor readings and send them upstream. For

1JFI = (∑xi)
2

n∑(xi)2 , where n is the number of elements. The worst fairness is

1/n, and the best is 1.

concreteness, we model our experiments on the deployment of

noise sensors in the building. Noise sensors collect measure-

ments, generate one 56-byte reading and send it to the cloud

server with TCP per second. We record the RTT (Round Trip

Time) of each sense-and-send transmission event. The results

are shown in Fig. 12. By choosing an appropriate connection

interval, TCPle reduces the waiting time significantly.

Lifetime is important for IoT devices. Therefore, in addition

to RTT, we also measure the energy consumption of each slave

in a data upload event. We modify NimBLE to record the

fractions of time the radio is in receiving, transmitting, and

idle mode and compute the energy consumption based on the

current and voltage from the nRF52840 data sheet [29]. Table

VII shows the energy consumption of the BLE end device per

sense-and-send event. TCPle consumes about 16.1%, 13.8%,

and 14.2% more energy than BLEach, TCPlp-ble, and CHIP.

There are two reasons for the increased energy consumption:

1) TCPle set a smaller connection interval (i.e., 7.5 ms which

is the minimum defined in BLE specification) than these

mechanisms, which introduces higher control overhead, which

is the main reason for higher energy consumption. 2) Longer

Obviously, there exists a trade-off between energy consump-

tion and throughput. In general, a smaller connection interval

means shorter waiting time while introducing more control

overhead. We build a model to mathematically measure the

trade-off and find that the throughput is more sensitive to

the reduction of the connection interval compared with energy

consumption. For example, compared with 5.2 ms, the energy

consumption increases about 12.3% while the throughput de-

creases about 85.7% when the connection interval is 52.5 ms.

For those applications that acquire low RTT/high throughput, it

can benefit from TCPle at a relatively small energy cost. For

those devices whose energy consumption is the bottleneck,

fortunately, the BLE specification provides ”slave latency”

which that allows a slave not to transmit for several connection

intervals and still maintain the connection. By setting the

”slave latency”, the energy consumption can be significantly

reduced (about 14.3%) with little performance .

2) OTA update: In the context of IoT applications, OTA

enables users to communicate, update, reconfigure and man-

age devices without having to physically access them. It is

common to perform a firmware update to a microcontroller
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TABLE VII: The average energy consumption of the BLE end

node per sense-and-send event.

Avg. energy consumption (uj)
BLEach 200.65±0.28
TCPlp-ble 210.22±0.23
CHIP 210.12±0.25
TCPle 240.62±0.25

device over BLE via an MQTT proxy [30]. In this section,

we perform our evaluation with OTA update events. It’s worth

noting that we only focus on the OTA file transmission part.

The BLE end node acts as the MQTT subscriber and the broker

and publisher are all on the cloud. The publisher generates a

3k-byte OTA file and then pushes it to the broker. The broker

sends it downstream to the BLE end node. We measure the

transmission time of one OTA file transmission.

Fig. 13 shows the CDF of the transmission time. Since

TCPle and TCPlp-ble adopt an unconventional large MSS (i.e.,

5 frames), the OTA file is segmented into only three TCP

segments. As a comparison, there are sixteen TCP segments

when implemented with BLEach. Fewer TCP segments mean

fewer connection events are required. Therefore, TCPle and

TCPlp-ble are significantly performant compared to BLEach

in this case. TCPle quickly transmits the second segment

after receiving the ACK for the first TCP segment. So its

transmission time is further shortened.

VII. RELATED WORK

BLE stacks. There have existed many proprietary BLE

stacks lacking transport layer support. Opensource BLE sup-

port in TinyOS and Contiki is entirely missing or limited.

Contiki only features transmissions of advertisement packets

for the TI CC2650 radio and a closed-source BLE radio and

L2CAP slave implementation for the nRF52 that does not

support fragmentation of TCP packets. Zephyr [31] comes

with stacks implementing full-fledged BLE connections. How-

ever, it supports TCP over BLE only on slave devices and

cannot fragment large TCP packets, making it unsuitable for

constrained IoT devices. Spork et al. propose BLEach [9]

which is an open-source stack with support for IPv6 over

BLE. It is built based on uIP without considering the impact

of parameters of transport layers on transmission performance.

Unlike these work, TCPle is a TCP/IP stack supporting TCP

over BLE. Considering the characteristics of BLE, TCPle adds

an adaption layer to make the TCP/IP stacks and BLE stacks

cooperate well.

Other relevant BLE research. In terms of BLE runtime

adaptability, Gomez et al. [32] show that connection interval

and slave latency impact BLE performance, suggesting that

these parameters could be tuned to meet given application

requirements. Similarly, Lee et al. [33] report on experiments

showing that the connection interval affects the packet de-

livery rate. and they propose to tackle the BLE connection

maintenance and energy consumption problems by controlling

connection interval [34]. Kindt et al. [35] adapt the connection

interval to traffic load for energy efficiency. Spork et al. [36]

blacklist poor channels and select a physical mode in order to

sustain high link-layer reliability, based on the link quality of

the BLE connection. In other work [37], they show how BLE

nodes can estimate and mitigate network loss and delay by

dynamically adapting their BLE parameters. Park et al. [38]

investigate a run-time scheduling system for BLE, and aim to

guarantee the quality of service (QoS) of multiple connections

through anchor point adjustment. Besides, some work focus on

designing battery-driven [39] or energy-harvesting [40] BLE

platforms. Petersen et al. [41] present a software platform

and experiments to analyze multi-hop BLE network behavior.

Some exploit BLE’s connection-less mode for other services,

such as neighbor discovery [42], localization [43], [44], and

locality-based authorization [45].

These works focus on the BLE performance in different

scenarios and applications. However, TCPle focuses on per-

formance optimization when TCP is upon BLE, which is an

unstudied area. We believe that TCPle, which improves the

performance of TCP over BLE significantly, takes a solid step

forward to achieving “Internet of Everything”.

VIII. CONCLUSION

In this paper, we systematically study the performance when

running TCP over BLE and point out that connection event

inefficiency is the main cause of bad performance. Based

on the analysis, we further propose TCPle, a novel TCP/IP

stack for BLE which significantly improves the goodput of

TCP when it is upon BLE. TCPle uses a connection event

length adaption mechanism to solve mismatching between the

maximum and actual connection event length and a connec-

tion event maintenance mechanism to solve the problem of

connection event ending prematurely. We conduct extensive

experiments to evaluate TCPle and results show that TCPle

improves TCP goodput by up to 101.6% compared with other

existing TCP-over-BLE stacks.

ACKNOWLEDGEMENTS

We sincerely thank our shepherd, John C. S. Lui, and

anonymous reviewers for their insightful comments. This

work is supported by NSFC under grant no. 62072396, Zhe-

jiang Provincial Natural Science Foundation for Distinguished

Young Scholars under grant no. LR19F020001, and the Funda-

mental Research Funds for the Central Universities (no. 226-

2022-00087). Wei Dong is the corresponding author.

Authorized licensed use limited to: Zhejiang University. Downloaded on September 10,2023 at 13:39:14 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] B. S. I. Group, “Bluetooth Specification Version 4.0,” Tech. Rep., 2010.

[2] D. Rajamohanan, B. Hariharan, and K. U. Menon, “Survey on smart
health management using BLE and BLE beacons,” in Proceedings of
IEEE ISED, 2019.

[3] L. F. Del Carpio, P. Di Marco, P. Skillermark, R. Chirikov, K. Lagergren,
and P. Amin, “Comparison of 802.11 ah and BLE for a home automation
use case,” in Proceedings of IEEE PIMRC, 2016.

[4] R. Tei, H. Yamazawa, and T. Shimizu, “BLE power consumption
estimation and its applications to smart manufacturing,” in Proceedings
of IEEE SICE, 2015.
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