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Abstract—Internet of Things (IoT), which connects a large
number of devices with wireless connectivity, has come into the
spotlight. Various wireless radio technologies and application
protocols are proposed. Due to scarce channel resources, different
network trafc may do interact in negative ways. This paper
argues that there should be an isolation layer in IoT network
communication stacks making each trafc’s perception of the
wireless channel independent of what other trafc is running.

We present Isolayer, an isolation layer design providing ne-
grained and exible channel isolation services in the heteroge-
neous IoT networks. By a shared collision avoidance module,
Isolayer can provide effective isolation even between different
wireless technologies (e.g., BLE and 802.15.4). Isolayer pro-
vides four levels of isolation services for users, i.e., protocol
level, packet-type level and source-/destination-address level.
Considering the various isolation requirements in practice, we
design a domain-specic language for users to specify the key
logic of their requirements. Taking the codes as input, Isolayer
generates the control packets automatically and lets related nodes
that receive the control packets update their isolation services
correspondingly.

We implement Isolayer on realistic IoT nodes, i.e., TI CC2650,
Heltec LoRa node 151, and perform extensive evaluations. The
results show that: (1) Isolayer incurs acceptable overhead in
terms of delay and memory usage; (2) Isolayer provides effective
isolation service in the heterogeneous IoT network. (3) Isolayer
achieves about 18.6% reduction of the end-to-end delay of
isolated packets in the IoT network with heavy trafc load.

I. INTRODUCTION

Recent years have witnessed the rapid growth of IoT (In-

ternet of Things) technologies. Various wireless radio tech-

nologies and application protocols have been proposed to

meet the various requirements. When multiple protocols are

running simultaneously, it may cause a network-wide failure

due to the channel resource starvation from one protocol [1].

For example, when MQTT and CoAP coexist, the bursty

transmissions of CoAP may cause a considerable delay in

receiving or forwarding the control messages from MQTT,

resulting in a crucial failure, especially for the delay-sensitive

task.

There are a few works proposed to deal with the above

problems. FWP [1], an isolation layer for sensor networks,

sits between the MAC layer and the network layer. It provides
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fair resource scheduling between different protocols. However,

the services provided by FWP are insufcient for the various

requirements from the different applications in IoT networks.

• Wireless radio technologies are diverse in IoT protocols.

Heterogeneous wireless radio technologies will exist in

the same IoT network because of various application

requirements (e.g., 802.15.4 for short-distance transmis-

sion, LoRa [2] for long-distance transmission). Recently,

multi-standard radio technologies (e.g., TI CC2650 sup-

ports for BLE and 802.15.4 [3]) are proposed to enable

communications among heterogeneous IoT devices in a

single chip and have attracted many attentions in the

industry. However, FWP only supports the single radio

since its key modules are designed specically for a

single radio (e.g., GTS for collision avoidance).

• The ne-grained protocol control is desired in IoT net-

works. For example, in the smart home where an IoT

system continuously monitors the home’s safety (e.g.,

smoke, gas) and environment (e.g., heat, air, light), users

expect that packets about safety (e.g., packets from

smoke) will not be interfered by other packets [4]. FWP is

single-rule and only provides isolation between different

protocols. Therefore, it is incapable of such device-related

isolation.

• The isolation requirements may change over time. For

example, in the smart home scenario mentioned above,

an IoT system continuously monitoring elderly health and

alert emergency services in case of abnormal conditions

is newly deployed. In this case, the alerts packets want

to have a higher priority to use the channel which

means the isolation rules need to be updated. However,

FWP only provides the xed isolation services unless re-

programming the IoT nodes.

In this paper, we propose an isolation layer design, Isolayer,

which supports the ne-grained and exible channel resources

isolation in the heterogeneous IoT networks. Based on the

analysis of different requirements of users from a large amount

of IoT applications [5]–[7], Isolayer provides multi-level iso-

lation, i.e., protocol level (e.g., MQTT vs. CoAP), packet-type

level (e.g., ACK packets vs. data packets), source-/destination-

address level according to the multi-dimension rules. Com-

pared with FWP that only provides a single rule, Isolayer

with a multi-dimensional rule engine can meet the various
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requirements in IoT applications better. However, providing

multi-level isolation will encounter many new challenges.

First, how to design the isolation layer to provide

unied network control services and to be compatible with

heterogeneous wireless radio technologies?

Solution: We design an isolation layer in existing IoT

protocol stack which is decoupled from other layers. It sits

upon the MAC layer and providing isolation service by

packets classier module, weighted fair queue-based packet

queue, .etc. We design an adaptation module for incorporating

different radio technologies. Considering the channel con-

tention between the different wireless technologies, we design

a shared collision avoidance building on cross-technology

communication, providing the sender with clear channels even

in a heterogeneous network.

Second, how to reduce the overhead introduced by the

isolation layer?

Solution: To reduce the transmission overhead caused by

complex operations from the multiple rules, the isolation layer

is designed as condition-triggered. The nodes only provide ef-

fective isolation for packets of interest when needed. Besides,

we take a series of measures to reduce its overhead, including

transmitting packets strategically, employing a circular queue,

etc.

Third, how to make the generation of the multi-

dimension rules more user-centric?

Solution: We propose a domain-specic language (DSL)

that encapsulates some implementation details (e.g., communi-

cation protocols, ports), making Isolayer user-friendly to non-

experts. By parsing the control code written by users, Isolayer

generates the control packets and distributes them to update

or activate the isolation service of the networks automatically

without having to re-burn the code to the IoT nodes, which is

time- and labor-saving.

Isolayer is implemented on realistic IoT nodes based on

the existing IoT network stack in RIOT OS [8]. We perform

extensive experiments to evaluate it. The results show that: (1)

Isolayer incurs acceptable overhead in execution time and pro-

gram memory; (2) Isolayer provides effective and hierarchical

isolation services in the heterogeneous IoT network; (3) Under

heavy trafc loads, Isolayer reduces the end-to-end delay of

the trafc of interest signicantly, about 18.6% reduction.

Specically, our contributions are as follows:

• We present a exible isolation layer design, Isolayer,

for IoT network which provides ne-grained and effec-

tive isolation services. We propose a shared collision

avoidance mechanism making Isolayer compatible with

different wireless radio technologies. To some extent,

Isolayer laid the foundation for the promotion of multi-

radio applications.

• We design a domain-specic language (DSL) for users

to express their requirements without considering the

networks’ details. Isolayer automatically updates or acti-

vates the isolation services according to the control code

written by users. By encapsulating some implementation

details, Isolayer is user-friendly to non-experts.

• We implement Isolayer based on existing network stacks

and evaluate it through a series of experiments. The

results show that Isolayer can provide effective isolation

according to the user requirements.

The rest of this paper is structured as follows. Section II

gives two use cases of Isolayer. Section III is an overview of

Isolayer, including the architecture of Isolayer and the module

description. Section IV introduces the usage of Isolayer. Sec-

tion IV describe the online isolation rules activation/update

mechanism of Isolayer. Section VI introduces the shared

collision avoidance mechanism while section VII introduce

the isolation procedure. We evaluate Isolayer in Section VIII.

Section IX is about the related work and section X concludes

this paper.

II. MOTIVATION

In this section, we study two real-world scenarios and use

cases to illustrate the necessity for an isolation layer in the

IoT network stacks.

DDos attack. With the explosive growth of IoT devices,

they have been the primary force behind the biggest dis-

tributed denial of service (DDoS) botnet attacks for some time.

Thousands of insecure IoT devices may be recruited to form

botnets to attack other Internet users, and even used to attack

critical national infrastructure, or the structural functions of

the Internet itself [9]–[11]. It is a threat that has never really

diminished, as numerous IoT device manufacturers continue

to ship products that cannot be properly secured [12], [13].

Suppose the gateway, as the entrance of the network, can

isolate different packets and only reserve most of the channel

resources to the secure packets of interests, the gateway will

be a security barrier that can prevent a potential network layer

Dos attack [14] to some extent.

Industrial IoT. Various wireless radio technologies and

application protocols playing different roles in the industrial

Internet of things (IIoT). For example, the sensing data are

uploaded to the gateway with a client-server mode protocol

(e.g., CoAP [15]), which is suitable for the multi-point-to-point

scenarios (e.g., data collection [16]). In order to receive the

control messages, the sensors often rely on a publish-subscribe

mode protocol (e.g., MQTT [17]) to subscribe to the topics that

are related to them. It is suitable for the point-to-point/multi-

point scenarios (e.g. device control [18]). However, the packets

related to the control message compete with data packets

for limited channel resources and may suffer unpredictable

delays because of back-off, retransmit .etc, leading to adverse

consequences.

It is necessary to introduce an isolation layer that can isolate

the important packets (e.g., those related to the machine‘

control) from other packets and reserve a certain channel share

for them even when the network is incredibly congested. With

the isolation layer, users can roughly estimate the end-to-

end delay of the control packets avoiding unintended adverse

consequences.

In general, it is extremely benecial to add an isolation layer

to the existing IoT network architecture.
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Fig. 1: Isolayer architecture overview. The gray boxes

indicate newly implemented modules in Isolayer.

III. ISOLAYER OVERVIEW

A. Architecture of Isolayer

Figure 1 shows the architecture of Isolayer where the gray

boxes are the modules newly introduced. In the multi-radio

nodes, it is a shared layer for different wireless technolo-

gies. Isolayer achieves the goal of providing ne-grained

and exible channel resources isolation with low overhead in

the heterogeneous IoT networks by three mechanisms: online

isolation service activation/update, shared collision avoidance

mechanism and conditionally-triggered isolation. We sketch

out these three mechanisms next.

1) Online isolation service activation/update: Unlike pack-

ets receiving, packets transmission, .etc, the isolation service

is unnecessary in some scenarios, such as where trafc load

is light. Therefore, Isolayer has two states: unactivated and

activated. In unactivated state, the nodes implemented with

Isolayer work like the nodes implemented with traditional

network stack (e.g., GNRC in RIOT OS and uIP in Contiki)

with low overhead. In activated state, the nodes provide the

isolation service according to the users’ requirements.

With online service activation/update, Isolayer can activate

or update the isolation services without reprogramming the

IoT nodes. First, the node implemented with Isolayer extracts

the isolation rules from the incoming control packets. Next, if

its isolation layer is activated, the node will update the control

rules; otherwise, it activates the Isolation layer by writing the

control rules into the control table. We carefully design the

control package structure to reduce its transmission overhead

which will be detailed in Section V.

2) Shared collision avoidance mechanism: Shared collision

avoidance mechanism allows multiple packets of different

protocols, wireless technologies or paths to avoid collisions

with others. Isolayer uses existing CTC technologies, i.e.,

BlueBEE [19] and XBee [19], to achieve the communication

between different technologies. Based on this, nodes imple-

mented with Isolayer will send a little packet to silence the

surrounding nodes, providing clear channels for the isolated

TABLE I: Mechanisms provided by, and modules imple-

mented in Isolayer.
Mechanisms Modules

Online isolation service activation/update

Classier,
Information extractor,
Parameters congurator,
Control table

Shared collision avoidance

Collision avoidance module,
BLE adaptation,
802.15.4 adaptation

Conditionally-triggered isolation

Classier,
Control table,
Packet queue

packets. The mechanism will be introduced in detail in Sec-

tion VI.

3) Conditionally-triggered isolation: The key of

conditionally-triggered isolation is packet scheduling

based on the weighted fair queue. Isolayer provides several

weighted fair queues and congures their weights according

to the control table. Once the isolation layer of the node is

activated, the node identies every outgoing packet. If the

packet meets the conditions recorded on the control table

indicating that it is a packet that needs to be isolated, Isolayer

will queue it in the corresponding queue. We will elaborate

on this mechanism in Section VII.

B. Module description

Table I summarizes the relationship between the mecha-

nisms and the modules that provide them. We briey describe

these modules.

Classier. There are generally two types of packets in

Isolayer: normal packets and packets that need to be isolated.

The classier is responsible for identifying these two packets

and directing them to the corresponding processing modules.

Information extractor. This module extracts the informa-

tion in the control packets and reorganizes them into isolation

rules.

Control table. The control table stores the isolation rules

which will be updated whenever a new control packet is

received. It is also an indicator of node states. If it is empty,

the node is unactivated, otherwise activated.

Packet queue. The packet queue module performs buffer

management and packet scheduling, which is a key module of

Isolayer. Isolayer provides two types of packet queues: FIFO

queue and weighted fairness queue (WFQ). The FIFO queue

works when the node is unactivated while the WFQ works

when activated.

Parameter congurator. This module congures the packet

queues’ parameters (e.g., the number and weights) to help

provide different channel isolation services.

Collision avoidance. This module provides a shared colli-

sion avoidance mechanism based on CTC in the heterogeneous

network, mainly for BLE and 802.15.4.

Adaption. Isolayer has three MAC adaptation modules:

BLE adaptation, LoRaWAN adaptation, and 802.15.4 MAC

adaptation. These modules encapsulate MAC layer function-

alities and provide unied interfaces to the isolation layer.
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Fig. 2: Workow overview of Isolayer.

1      Object o_mqtt;

2      o_ mqtt.protocol=MQTT;

3      share(o_mqtt)=0.3;

Fig. 3: An control code example of Isolayer. The meaning

is that MQTT packets have 30% channel resources.

IV. USAGE OF ISOLAYER

Before introducing these three mechanisms mentioned

above in detail, we present the usage of Isolayer rstly in

this section for ease of explanation.

Figure 2 shows the workow of Isolayer. First, users

write the control code and upload it to the cloud/edge. The

cloud/edge parses the code and then generates control packets

sent to the controlled IoT network. Having received the control

packets, the IoT nodes activate/update their isolation layer and

provide isolation services.

As to the control code, we develop a domain-specic

language (DSL) for users borrowing the program structure

from C language which is a fairly popular and easy-to-learn

programming language. Next, we describe the syntax details

of control code by an example (see Figure 3) using Isolayer.

Writing a complete control code has the following three

steps.

1) Dening the isolated objects (Line 1 in Figure 3). Users

need to dene the Isolated objects by using Object

rstly. Users can dene multiple objects in a control code

simultaneously.

2) Describing the objects (Line 2 in Figure 3). Isolayer

provides ve attributes for users to describe the packets

they want to isolate, as shown in Table II. It is worth

noting that in order to make the system more practical,

we design the reserved elds in the control packages (See

Section V) so that the attributes can be extended easily.

3) Allocating resources to the objects (Line 3 in Fig-

ure 3). Isolayer provides one interface whose explanation

is shown in Table III. Each dened object should be

allocated resource. The parsing program will check the

rationality of the data and prompt errors if there are any

(e.g., more than 100% of the channel resources have been

allocated.)

TABLE II: The attributes to describe the isolated objects.
Attributes Description Options

Radio
The radio technologies
of the packets.

R 802154 (802.15.4 packets),
BLE (BLE packets),
LORA (LoRa packets) ...

Protocol
The APP layer protocols
of the packets.

MQTT (MQTT packets),
COAP (CoAP packets), ...

Pkt type The type of the packets
CONTROL (Control packets),
DATA (Data packets), ...

Src address
The source IP/MAC
address of the packets.

—

Dest address
The destination IP/MAC
address of the packets.

—

Number Object ID Value

Radio Protocol Pkt_type Src_addr Dest_addr

4 6 9 140 268

0 268 275

12

4

Fig. 4: An example of the data eld of the control packet

which has one object.

V. ONLINE ISOLATION SERVICE ACTIVATION/UPDATE

A. Control packets generation.

A program running on the cloud/edge parses the control

code uploaded by user and generates the corresponding control

packets. Figure 4 shows an example of the control packets’

data eld. Every control packet carries three important infor-

mation: number, object ID and value.

Number. The number indicates the number of isolated

objects. Currently, Isolayer supports up to 16 isolated objects

dened in one control code.

Object ID. The object ID helps identify the packets that

should be isolated. It is a hierarchical format with ve

components which are Radio, Protocol, Pkt_type,

Src_addr and Dest_addr, as same as the attributes men-

tioned in Section IV. The components not mentioned in the

control code will be set to all 0s. It is worth emphasizing

that Src_addr and Dest_addr elds sizes are 128 bits to

support IPv6 addresses. In order to facilitate future expansion,

the length of Protocol and Pkt_type are both 3 bits

which means Isolayer can support up to 8 different protocols

and types of packets, respectively.

Value. The value is the channel share the user wants to

allocate to the isolated object, an integer between 1 and 100

taking up 7 bits. Every object dene in the control code has the

corresponding ”Object ID” and ”Value” elds in the control

packet.

B. Activate/update isolation service

The IoT nodes will activate or update their isolation services

once receiving the control packets. Each node has a control

table, as shown in Table V which records the control rules

extracted from control packets, including object ID and the

corresponding channel share. If the control table is empty, the

node is unactivated originally. The nodes will write the rules

extracted to the table and switch to the activated state. If the
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TABLE III: The interface providing by Isolayer to allocate resources.
Interfaces Description & Return value Syntax Example

bool share()
Allocating channel resource to the object
and return true if allocating successfully

bool share(IsolatedObj *object name, oat share†) bandwidth(A,0.3)

control tables have some entries already, they will overwrite

their tables and provide new isolation services.

C. Reduce the transmission overhead of control packets

Isolayer lowers the transmission overhead of the control

packets from two aspects.

1) Reduce the size of control packets. The size of the

whole MAC frame of the control packets that carry

one object’s information is about 146 bytes (36 bytes

for the payload and about 110 bytes for overall header

overhead [20]) on 802.15.4, larger than the Maximum

Transmission Unit (MTU) in IEEE 802.15.4 that is 127

bytes. In other words, the control packet has be frag-

mented into two packets, which brings double trans-

mission overhead. As shown in Fig. 4, the size of the

Src_addr and Dest_addr elds is 32 bytes, about

88.9% of the total size. Therefore, Isolayer minimizes the

size of these two elds to reduce the size of the control

packets. For the control code that has no description of

the source/destination address of the packets, Isolayer

deletes these two elds. For the control code that only

describes one of these two addresses, Isolayer reserves

the corresponding address eld and adds another bit

”0” before the source address eld if Src_addr is

reserved to facilitate the identication of reserved address

elds. If users have requirements for both the source and

the destination address of the packets, these two elds

will be reserved. In order to reduce the overall size,

Isolayer will reuse the header compression module in

6LoWPAN [21] which is originally designed for IPv6

header compression. Besides, we add another byte that

is 0 between consecutive ”Value” and ”Object ID” to

distinguish the elds belong to the different objects,.

2) Reduce the transmission times of control packets.

Broadcasting the control packets in the network is a

feasible solution to deliver the isolation rules. However,

it may introduce extra overhead (e.g., the control packets

with the rules that 802.15.4 packets have 50% channel

share are sent to BLE nodes). In order to eliminate

such overhead, We have summarized a few rules (See

Table IV) to guide the sending of control data packets.

Unlike BLE and LoRa, 6LoWPAN enables multi-hop

routing over 802.15.4. Therefore, the control packets must

be transmitted to each 802.15.4 node in the network even

if the source and destination address of the data packets

have been specied. Generally, Isolayer reduces packet

transmissions by 67% in theory by transmitting control

packets strategically.

VI. SHARED COLLISION AVOIDANCE.

Wireless technologies already have some mechanisms to

avoid collisions. For example, 802.15.4 relies on carrier sense

(CSMA) to limit collisions and RTS-CTS to combat hidden

terminals. BLE adopts a form of frequency-hopping spread

spectrum (FHSS) called adaptive frequency hopping (AFH) to

avoid packet collisions.

However, these mechanisms themselves are not enough

in terms of channel isolation. First, they still let packets

compete for channels in essence instead of reserving channel

resources for the specic packets. Second, they may be invalid

when cross-technology. For example, the RTS packets sent by

the 802.15.4 node are incomprehensible to the BLE nodes.

Therefore, Isolayer proposed that there should be a shared

collision avoidance mechanism over heterogeneous wireless

technologies in the isolation layer. Since LoRa uses license-

free sub-gigahertz radio frequency bands like 433 MHz and is

no overlap with BLE and 802.15.4 that operate on the 2.4GHz

ISM band. We only consider 802.15.4 and BLE here.

We propose the avoidance mechanism on the top of cross-

technology communication to solve the invalidness when

cross-technology. XBee [22] is demonstrated as a ZigBee

to BLE communication and BlueBee [19] is a BLE to Zig-

Bee communication. Both of them can be implemented on

commodity devices, requiring neither hardware nor rmware

changes at the senders and the receivers.

Based on CTC, Isolayer borrows the idea of RTS/CTS

mechanism and improves it to provide clear channels. Before

transmission, the node sends a little packet containing a grant

duration which will grants the channel around the transmitter

to the transmitter. That is, upon overhearing such a packet,

the surrounding nodes will be silent until the grant duration

expires, and only the sender can transmit immediately. The

grant duration d is related to the length L of the packet that will

be transmitted and the data rate D of the wireless technology:

d ∝

L

D
. (1)

VII. CONDITIONALLY-TRIGGERED ISOLATION

For every packet in the activated node, Isolayer rst judges

whether it needs to be isolated. Isolayer extracts the protocol,

packet type, source address and destination address of the

packet to generate a packet ID. Then Isolayer compares the

packet ID with each object ID in the control table. Once

Equation 2 holds, the packet needs to be isolated.

P = P&O (2)

P is the ID of the packet while O is an object ID in the control

table.

Next, the packet enters the corresponding packet queue

according to the isolation rule it matches. The packet queue
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TABLE IV: The relationship between the control code and the receiver of the control packets. ”—” represents that

the eld can be empty or non-empty, ”×” represents that the eld must be empty, an exact string represents that eld

must be non-empty.
Conditions Rules

Radio Protocol Packet Type Source address Destination address Sending packets to #

R 802154 — — — — all 802.15.4 nodes

BLE × — src addr1 — the BLE nodes whose address is src addr1

LORA × — src addr2 — the LoRa nodes whose address is src addr2

× — — src addr3 ×

the BLE/LoRa node whose address is src addr3 if src addr3 is an
address of the BLE/ LoRa node or all 802.15.4 nodes if src addr1
is an address of the 802.15.4 node

× — — × — all IoT nodes

TABLE V: An example of the control table.
No. Object ID Share

1 0100000000..0110010 0010010

2 0000110010..0000000 1010110

module in the isolation layer performs the buffer management

and packet scheduling. Isolayer borrows the basic idea of

simple fair queueing [23] which is as known as Weighted

Fair Queueing (WFQ) that provides output bandwidth sharing

according to the preset weights. For example, suppose the

weight of WFQ1 is 1, the weight of WFQ2 is 2 and the packet

size in WFQ1 and WFQ2 are the same. Every time a packet

from WFQ1 is sent, two packets from WFQ2 will be sent

next. In other words, WFQ can allocate channel resources

proportionally according to the weights of different queues.

The key idea of WFQ is ”virtual nish time”. It calculates

the virtual nish time for every packet in the queue by the

following formula:

Fi = max(Ai, F i− 1) +
Li

W
. (3)

where i denotes a packet, Fi denotes the nish time, Ai

denotes the arrival time of packet, Fi−1 denotes the virtual

nish time of last packet, Li denote the packet length, W is

the weight of the queue. Obviously, the virtual nish time is

proportional to a packet’s length in the traditional algorithm.

However, since Isolayer reserves the channel and suppresses

other transmitters, the isolation layer includes the silence

durations of the packets in its calculations, as represented as:

Fi = max(Ai, F i− 1) +
Li + STi

W
. (4)

where STi is the silence time of packet i. Isolayer always

reads the packet with the minimal virtual nish time from the

queue and sends it rstly.

Providing WFQ-based Isolation services for packets with

Isolayer requires two steps. First, create the packet queues

according to the control table. Specically, if the control table

has N entries meaning there are N + 1 types of packets (N

types that need to be isolated + another type that does not),

Isolayer creates N+1 WFQs. Second, set the weights of these

packet queues. The wights are set as equal to the share in the

control table. As to the queue of the packets that does not

need to be isolated, the weight is calculated as follows:

W = 100−
N∑

i=1

Wi (5)

……

…

Normal packets Target packets 1 Target packets 2

WFQ1

WFQ2

WFQn

ClassifierPending packets

Fig. 5: The packet queues in the isolation layer. Packets

enter the corresponding queues after the identication of

the classier.

Q1.front

Q1.tear

Q2.front

Q2.tear

Q3.front

Q3.tear

Fig. 6: The packet queue structure used by Isolayer. The

shaded areas are the shared queue spaces.

In summary, Isolayer provides two types of packet queues:

a FIFO queue when nodes are unactivated and several WFQs

when activated, as shown in Fig. 5. When the nodes are un-

activated, all packets enter the FIFO queue and are scheduled

by the time they arrive. Once the nodes are activated, Isolayer

creates WFQs. Pending packets enter the corresponding queue

after the identication of the classier. However, the number

of entries in the control table is variable. When there are

dozens of entries in the control table, generating the packet

queues may occupy too much dynamic memory, harming the

implementation of Isolayer on low-end IoT nodes.

Isolayer uses the idea of circular queue [24] to solve the

problem, as shown in Fig. 6. Isolayer preallocates the memory

to the circle queue shared by multiple packet queues. Besides,

Isolayer reserves some space which can expand the queues on

its both end to achieve exible allocation.

VIII. EVALUATION

A. Implementation

Hardware and OS. We implement Isolayer on CC2650

(ROM 128kB, RAM 20kB, multi-standard radio chip support-
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Fig. 7: IoT nodes for the implementation.
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Fig. 8: An indoor testbed for Isolayer.

ing 802.15.4/ZigBee and BLE) [3] and Heltec LoRa node 151

(ROM256kB, RAM32kB). [25]. We also implement Isolayer

on a gateway comprising of a Raspberry Pi 3 (RPI) [26]

connected with one Heltec LoRa node 151 and two CC2650

chips. The isolation layer and the above run on the RPI,

providing unied isolation services, while the MAC and the

lower layer run on the radio devices. Fig. 7 shows these three

types of IoT nodes.

We implement Isolayer on RIOT [8], an open-source oper-

ating system that supports a rich set of protocols and reuse

the GNRC protocol stack [27] and BLE NimBLE stack [28]

of RIOT.

Setup. In order to facilitate the evaluation, we use a laptop

to act as the cloud/edge to parse the control code and generate

the control packages. It connects to the gateway by a network

cable. We mainly use a mixed indoor testbed for the evaluation

(see Fig. 8). Six 802.15.4 nodes, six BLE nodes and three

LoRa nodes are deployed indoor. We congure the transmis-

sion power of 802.15.4 nodes to form a two-hop topology. The

BLE and LoRa nodes communicate directly with the gateway.

When not specied, the payload length of data packets is 20

bytes. The LoRa SF is set to 7, the bandwidth is set to 125kHz

and the CR is set to 4/8. The connection interval of BLE is

set to three seconds.

We perform a systematic evaluation on Isolayer. We com-

pare Isolayer with two network stacks, i.e., FWP [1] providing

isolation between different protocols on 802.15.4 network and

original GNRC implemented in RIOT OS [27].

B. Overhead of Isolayer

1) ROM and RAM: The lightweight implementation of

Isolayer is essential because it will be installed on resource-

constrained IoT nodes as well. We quantify the ROM and

TABLE VI: Default parameters setting of Isolayer.
Parameters Value

The number of entries in control table 5

The capacity of packet queue 48

The number of the radios supported 1

802.15.4

BLE

LoRa

0 16 32 48 64 80

ROM (KB)

Isolation layer

Other layers

(a) ROM size

802.15.4

BLE

LoRa

0 2 4 6 8 10 12

RAM (KB)

Isolation layer

Other layers

(b) RAM size

Fig. 9: ROM and RAM usage of Isolayer.

RAM of Isolayer with its default implementation on RIOT

OS. Some parameters that may inuence memory usage are

set as Table VI.

Figure 9 shows the ROM and RAM of Isolayer on different

radios. Compared with the original network stacks, Isolayer’s

ROM and RAM increase about 4.0% and 2.9% on 802.15.4,

4.5% and 6.1% on BLE, 12.6% and 13.6% on LoRa. Though

larger memory usage, the implementation of Isolayer is still

lightweight for many existing IoT nodes. For example, the

Imote2 node has 256KB RAM and 32MB ROM; Arduino

ZERO has 32KB RAM and 256KB ROM; TI CC2538 has

32KB RAM and 512KB ROM.

2) Delay: We evaluate the overhead of Isolayer in terms of

communication delay with a light trafc load. The transmitter

A sends a 20-byte packet to the gateway per ve seconds.

Once receives a packet from node A, the gateway relays it

to another node B. We record the end-to-end delays of 200

packets when the isolation layer is activated and not activated,

respectively. When activated, the isolation layer allocates the

packets from A to B with 100% channel share.

Figure 10 shows the average end-to-end delay of the

802.15.4, BLE and LoRa packets. Since 802.15.4 node is

implemented with a full TCP/IP stack compared with LoRa

and BLE, its delay is the maximum. Compared with GNRC,

activated Isolayer costs 11.29%, 25.96% and 20.29% more

time on 802.15.4, BLE and LoRa, respectively while the

unactivated Isolayer costs 1.39%, 2.43% and 1.94% more time.

When unactivated, Isolayer only performs one more step to

conrm its state by checking whether the control table is

empty before sending a packet. By introducing the unactivated

state, the negative impact of the isolation layer can be reduced

signicantly when the isolation service is not needed.
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Fig. 10: Delay performance on different wireless technolo-

gies.

TABLE VII: Time of taking effect on different wireless

technologies.
802.15.4 BLE LoRa

Time 68.3 ms 52.1 ms 132.6 ms

C. Time of taking effect

We study the time of Isolayer taking effect in this section.

The topology is that a gateway connects to an IoT node (i.e.,

802.15.4 node, BLE node or LoRa node). When receiving the

control packets, the gateway will forward them to the IoT

node. We record the time interval from the gateway relaying

the control packet to the node starting to provide isolation

services. There are no other packets that need to be transmitted

by the gateway. The control packets’ payload sizes of different

wireless technologies are the same.

The results are shown as Table VII which are averaging

from 50 events. The LoRa node has the maximum time

interval. The reasons are two-fold: 1) LoRa has the lowest

data rate. In the settings of SF=7 and bandwidth = 125kHz, the

data rate is about 5.47 kbps, much smaller than the 802.15.4’s

and BLE’s. 2) LoRa has the maximum rendezvous delay. As

specied in the LoRaWAN specication [29], the gateway

has to wait for the uplink packets to perform the downlink

transmissions.

D. Compatibility with heterogeneous network

In this section, we evaluate Isolayer in terms of its colli-

sion avoidance mechanism in a heterogeneous network. One

802.15.4 node sends 20-byte UDP packets to the gateway on

channel 14. Four BLE nodes send 20-byte packets to the gate-

way as well. In order to evaluate the avoidance mechanism of

Isolayer, we disable the adaptive channel-hopping mechanism

of the BLE nodes and make them send packets on channel 8

that overlaps channel 14 of 802.15.4. We make the trafc load

increase by setting the packets sending interval of BLE and
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Fig. 11: The end-to-end delay of 802.15.4 packets when

coexisting with BLE packets.

study the end-to-end delay of 802.15.4 packets as the trafc

load varies. In this case, Isolayer allocates 50% of the channel

resources to 802.15.4 packets.

Figure 11 shows the results. When the trafc load increases,

Isolayer achieves a 15.8% reduction compared with GNRC

and an 8.8% reduction compared with FWP. Since the 802.15.4

node implemented with GNRC lacks a collision avoidance

mechanism, it backs off repeatedly if the channel is jam-

packed. FWP uses GTS to provide collision avoidance, but

it is invalid to the heterogeneous nodes. The 802.15.4 node

implemented with FWP still suffers from the MAC layer’s

back-off mechanism because of the transmission of BLE

packets. The inefciency of the collision avoidance mecha-

nism and the delay introduced by the isolation layer cause

FWP’s maximum end-to-end delay. Isolayer provides a shared

avoidance mechanism on heterogeneous wireless technologies

and thus has a better performance.

E. Case study

In this section, we evaluate Isolayer from two cases men-

tioned in Section IV.

1) DDos attack: In this case, we try to prove the ability

of Isolayer in resisting denial-of-service (DDoS) attacks. In

this case, four 802.15.4 node act as the attackers that send in

total of 20 20-byte UDP packets to the gateway per second

continuously. A BLE node acts as the victim and sends one 20-

byte packet to the gateway per second. The Isolayer allocates

the packets from the BLE node 20% channel share. We record

the BLE packets’ channel share on the gateway before and

after the isolation layer’s activation, as shown in Fig. 12.

Obviously, the channel share of BLE packets goes to stabi-

lization (i.e., 5%) after the gateway starts to provide isolation

service at 30 sec. The primary reason is that Isolayer reserves

an empty packet queue for BLE packets. Without isolation,

the BLE packets have to share the packet queue with other

packets. The fake packets from the attackers occupy the most

space of queue in the jam-packed gateway. Thus the BLE

packets may be dropped. With isolation, the BLE packets have

a single packet queue to avoid being dropped. Besides, the

scheduling mechanism of Isolayer guarantees their channel

share, which means they will not wait long before being sent.

2) Industrial IoT: We use a simulation case of an indus-

trial IoT (IIoT) application, which has been introduced in
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DDoS attack.
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Section IV to prove the role of Isolayer in wireless IIoT.

In this case, four CC2650 nodes upload CoAP packets to

the cloud (a laptop here) with 802.15.4 through the gateway.

An MQTT broker runs on the laptop. A CC2650 acts as an

MQTT subscriber while another CC2650 acts as the publisher

publishing the message to the broker every ve seconds. We

record the delay from the publisher sending the message to

the subscriber receiving the message. Isolayer provides the

MQTT packets with 50% channel share and the isolation layer

is always activated. As the trafc load increase, the results are

displayed in Fig. 13.

When the trafc load is light (e.g., BLE nodes send three

As the trafc load increase, the end-to-end delay of the

three stacks all increases. The reasons are two-fold. First,

the probability of packet collisions increases, resulting in

retransmission. Second, packets have to wait more time in the

packets queue and may even be dropped.packets per second),

Isolayer has the maximum delay because of the overhead

of the isolation layer. However, the introduced delay can be

eliminated by close the isolation service that is unnecessary

when the trafc load is light. When the trafc load is rela-

tively heavy, Isolayer has a better performance achieving an

18.6% reduction compared with GNRC and a 3.9% reduction

compared with FWP. The difference comes from that Isolayer

provides an individual packet queue and a certain share of the

clear channel for MQTT packets.

IX. RELATED WORK

Isolayer draws insights from many existing works. We di-

vide them into three categories: packet scheduling algorithms,

interference detection and network isolation.

Packets scheduling algorithms. In the last few decades

years, many classical packet scheduling algorithms [23], [30]–

[32] which are capable of providing guaranteed QoS have

been developed. However, most of them are designed, ignoring

the extra delay introduced by retransmission or back-off,

making them inapplicable to the wireless network due to the

too unreliable wireless channels. Therefore, the problem of

providing QoS over unreliable wireless channels has received

growing interest in recent years. Jaramillo et al. [33] propose

a framework for developing scheduling policies in ad hoc

networks with real-time ows and provides online scheduling

policies for a special case. Hou [34] proposes a general

approach for designing scheduling mechanisms for real-time

trafc over time-varying wireless channels. Yang et al. [35]

study deadline-aware scheduling with adaptive network coding

(NC) for real-time trafc over a single-hop wireless network.

Compared with previous works focusing on a single ra-

dio, our work is an architecture applicable to heterogeneous

networks, which provides multi-level isolation considering

collision among different wireless technologies.

Collision avoidance. SoNIC [36] enables resource-limited

sensor nodes to detect different interference sources (e.g., WiFi

and Bluetooth) by extracting the distinct patterns in 802.15.4

packets, e.g., variances of in-packet RSSI series, link quality

indication, etc. DOF [37] utilizes the autocorrelation of signals

to sensing the spectrum occupancies of different types of sig-

nals. Smoggy-Link [38] maintains a link model to describe and

trace the relationship between interference and link quality of

the sender’s outbound links. With such a link model, Smoggy-

Link can obtain ne-grained spatiotemporal link information

to perform adaptive link selection and transmission scheduling.

ZiSense [39] is a low-duty cycling mechanism resilient to

interference. It detects ZigBee signals by short-term features

extracted from the time-domain RSSI sequence and wakes up

nodes accordingly.

Most of the above works focus on interference detection of

the specic wireless technology (e.g., 802.15.4 in SoNIC [36]

and ZiSense [39]) and hardly maintain the effectiveness when

detecting interference of other wireless technologies. Isolayer

extends an existing work and provides a shared collision

avoidance mechanism for different wireless technologies (e.g.,

802.15.4, WiFi and LoRa).

Network isolation. The motivation for network isolation is

non-interference between different protocols/applications. The

idea that the network should support concurrent operation for

multiple protocols/applications is not new in the Internet. TCP

slows down its data generation when it encounters a packet

loss, which is one of the keys to Internet scalability. This

congestion control feature exists at layer 4 because the narrow

waist of the Internet is layer 3. However, the narrow waist has

moved to the bottom layer in the IoT network due to the scarce

channel resources. Choi et al. [1] introduce a new isolation

layer in sensor network communication stacks. It achieves

isolation and fairness by shared collision avoidance and fair

queuing across protocols in sensor networks. CerborOS [40]
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is a resource-secure OS for sharing IoT devices. It uses a

code interpreter for instruction-level monitoring and managing

running apps and resource contracts to dene applications

resource usage.

These work have their contributions. However, they ignore

the varying requirements in practice and only provide single-

dimensional isolation. Even though, the above existing works

shed light on an important aspect in designing Isolayer, that

is how to provide reliable isolation between different ows.

Isolayer is an extension of these works, which is dedicated

to providing user-customizable isolation solutions in hetero-

geneous IoT networks. Besides, these works also indicate the

direction for future work, such as designing an architecture that

can isolate the computation and storage resources for different

objects.

X. CONCLUSION

In this paper, we argue that IoT network stacks should

have an isolation layer. Based on the above idea, we design

Isolayer, an isolation layer design providing exible and

ne-grained channel isolation services in heterogeneous IoT

networks. Isolayer provides four levels of isolation services

(i.e., protocol level, packet-type level and source-/destination-

address level) according to the users’ requirements and still

provides effective isolation services between packets with

different wireless technologies. We have implement Isolayer

in the existing IoT network stack in RIOT OS and perform

extensive evaluations on the realistic IoT nodes. Results have

proved that Isolayer is lightweight and provides effective iso-

lation services in various scenarios. Isolayer is concerned with

the networks’ heterogeneity trends and laid the foundation for

the promotion of multi-radio applications to some extent.
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