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Abstract—Effective bandwidth prediction in the fifth-
generation (5G) cellular networks is essential for bandwidth-
consuming applications, such as virtual reality and holographic
video streaming. However, accurate bandwidth prediction in 5G
networks remains a challenging task due to the short-distance
coverage and frequent handover properties of 5G base stations.
In this paper, we propose HYPER, a HYbrid bandwidth
PrEdiction appRoach using commercial smartphones. Hyper
uses an AutoRegressive Moving Average (ARMA) time series
predictive model for intra-cell bandwidth prediction and a
Random Forest (RF) regression model for cross-cell bandwidth
prediction. Our ARMA model takes prior bandwidth usage as
its input, while the RF model further uses related network and
physical features to predict future bandwidth. We conduct a
measurement study in commercial 5G networks to analyze the
relationship between these features and bandwidth. Moreover,
we also propose a handover window adaptation algorithm to
automatically adjust the handover window size and determine
which model to use during handover. We use commercial
5G smartphones for data collection and conduct extensive
experiments in diverse urban environments. Experimental
results based on one TB of cellular data show that HYPER
can reduce the bandwidth prediction error by more than 13%
compared to state-of-the-art bandwidth prediction approaches.

I. INTRODUCTION

The fifth-generation (5G) has attracted extensive attention

in the communication industry and academia in recent

years. Compared to fourth-generation (4G) LTE, a major

improvement of 5G New Radio (NR) is its significantly higher

bandwidth. In theory, 5G can deliver up to 20 Gbps peak

downlink bitrates and more than 100 Mbps average data

rates [22]. 5G, therefore, enables a wide range of applications

with high bandwidth requirements such as virtual reality and

cloud gaming. For these applications, being aware of the

available bandwidth in advance can help achieve adaptive

configuration (e.g., rendering granularity, image resolution,

etc.) to improve the user experience.

Existing short-term bandwidth prediction approaches in

cellular networks can be divided into two categories. One

is based on time series predictive models [19], [24], [36],

another is based on Machine Learning (ML) regression

models [14], [15], [30], [33], [35]. The former takes a

time series of past throughput as the inputs to predict

cellular link bandwidth while the latter aims to further

use related features, including upper-layer information (e.g.,

Round Trip Time (RTT), loss rate) and lower-layer information

(e.g., signal strength, Signal-to-Noise Ratio (SNR), link
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Fig. 1: 5G throughput and handover in a driving scenario.

quality), to train a regression model. However, we find that

both approaches cannot be directly applied in commercial

5G cellular networks. ML regression models suffer from

low-fidelity PHY/MAC layer information obtained using

Commercial-Off-The-Shelf (COTS) 5G smartphones, leading

to relatively worse prediction accuracy. Time series predictive

models usually work well for relatively stable networks.

However, link bandwidth in cellular networks is highly

dynamic, especially for 5G networks. We have conducted

a microscopic measurements study in a driving scenario.

Figure 1 shows that the short-range coverage of 5G base

stations will introduce frequent handover. A handover event

may cause significant throughput variations, making the time

series model ineffective for 5G bandwidth prediction.

In this paper, we propose HYPER, a hybrid bandwidth

prediction approach for 5G cellular networks that combines

time series predictive models and ML regression models.

HYPER aims to achieve accurate bandwidth prediction for 5G

cellular networks with frequent handover events. Specifically,

we first apply a light-weight AutoRegressive Moving Average

(ARMA) time series predictive model to estimate the intra-cell

bandwidth time series with significant temporal correlations,

taking prior bandwidth usage of the current cell as the input.

To further eliminate the prediction drift caused by significant

throughput changes due to frequent handover, we use a

Random Forest (RF) regression model to refine the bandwidth

prediction results during base station handover.

However, accurate bandwidth prediction is still challeng-

ing from two aspects: (1) What features extracted from

commercial devices can help improve bandwidth prediction

accuracy? Besides the commonly used network features, 5G

link bandwidth may be affected by a multitude of physical

factors, such as moving speed and handover events [18]. (2)

How to determine when to use the ARMA model and when

to use the RF model during handover? We aim to use the

ARMA model for bandwidth prediction as soon as possible978-1-6654-6824-4/22/$31.00 © 2022 IEEE
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after a handover event due to its good property of capturing

the temporal correlations of time series. However, We find

that the bandwidth will be affected during handover and even

a long period after the handover event. There is a tradeoff in

determining the size of handover windows1 whose data are

used for learning the ARMA parameters and simultaneously

fed into the RF model for bandwidth prediction. A small

window size may include insufficient training data for the

ARMA parameters, while a larger one will lead to excessive

use of the RF model. Both cases will lead to a reduction in

the prediction accuracy. To address the above two challenges,

we first conduct an extensive measurement study to extract

available upper-layer (network layer), lower-layer (PHY/MAC

layer), and physical information from COTS smartphones

and identify which features are correlated with cellular link

bandwidth. We then propose a handover window adaptation

algorithm to automatically set the handover window size based

on the stationarity of bandwidth time series.

We implement HYPER in COTS 5G smartphones without

any change to the operating system or the need of rooting

the phones. We mainly collect data in 5G cellular networks

of China Mobile Communications Group (CMCC), a major

5G carrier in China, and extract related information through

Application Programming Interfaces (APIs) provided by An-

droid. Our experiments consume more than one TB of cellular

data in diverse urban areas with different movement states.

Experimental results show that HYPER can achieve a median

downlink bandwidth prediction error of 10% in typical driving

scenarios in urban areas, improving more than 13% compared

to existing bandwidth prediction approaches. For the uplink,

HYPER can achieve a median uplink bandwidth prediction

error of 5%. We also integrate HYPER into a video streaming

application and a congestion control application to show how

HYPER can benefit existing bandwidth-related applications.

More importantly, overhead analysis results show that HYPER

will not introduce much computation overhead during online

bandwidth prediction.

In summary, we make the following key contributions:

(1) We have conducted an extensive measurement study in

commercial 5G cellular networks to investigate the commer-

cially available information that is related to link bandwidth.

We identify three upper-layer information, three lower-layer

information, and two physical information that are signifi-

cantly correlated with 5G cellular link bandwidth.

(2) We propose HYPER, a hybrid bandwidth prediction

approach for 5G cellular networks. HYPER predicts the intra-

cell bandwidth using an ARMA model and the cross-cell

bandwidth using an RF model. We propose a handover window

adaptation algorithm based on time series’ stationarity to

adaptively determine the handover window size and improve

the bandwidth prediction performance during handover.

(3) We evaluate HYPER using COTS smartphones in com-

mercial 5G networks. Results show that HYPER achieves a

1For each cell, its handover window is defined as the period whose
bandwidth will be affected by the handover event.

better bandwidth prediction accuracy than existing approaches

in all the scenarios we have explored. The low system

overhead of HYPER indicates that HYPER is lightweight for

commercial 5G networks.

II. RELATED WORK

A. Time Series Predictive Model-based Prediction

In cellular networks, time-stamped throughput data can be

stored as time series and frequently show temporal correla-

tions [4]. Historical throughput time series can be used for

bandwidth prediction and network planning. Autoregressive

models are common time series predictive models that have

been extensively used in wireless networks. Papagiannaki et

al. [19] use a low-order AutoRegressive Integrated Moving

Average (ARIMA) model to capture the short memory process

of traffic loads, while Sadek et al. [24] use a Gegenbauer

ARMA model to specify long memory processes. There are

also some studies using similar models to predict other related

metrics in cellular networks. For example, in [11] and [27],

autoregressive models are applied to predict future SNR values

and handover events, respectively.

However, these autoregressive models can only work well in

relatively stable networks without abrupt throughput changes.

In other words, ARMA models work well inside base stations

but have a poor prediction performance during handover. Thus,

these approaches cannot be directly applied in 5G cellular

networks due to their frequent handover.

B. ML Model-based Prediction

Using ML models for bandwidth prediction has received

significant attention in recent years [12], [14], [17], [21],

[30], [33]. Previous studies investigate different sets of

features that are correlated with cellular link bandwidth

for prediction purposes. Various ML models using different

layers’ features have been proved effective for bandwidth

prediction in LTE networks. Proteus [30] use Regression Trees

(RTs) to predict the short-term network performance while

LinkForecast [33] uses an RF model. Liu et al. [14] proposes

three offline prediction methods (i.e., Naive Bayes (NB),

Logistic Regression (LR), and Artificial Neural Networks

(ANN)) to conduct link prediction and further propose

an online LR model-based link estimator TALENT [15].

Recently, PERCEIVE [13] exploits a Long Short Term

Memory (LSTM) model for uplink bandwidth prediction.

However, using these ML models with COTS smartphones

will also lead to poor prediction performance. We observe

that lower-layer features used in these works (e.g., Ref-

erence Signal Received Power (RSRP), Reference Signal

Received Quality (RSRQ), and Signal-to-Interference Noise

Ratio (SINR)) are usually of low fidelity when collected from

COTS smartphones. To make it worse, some commonly used

lower-layer information is even not available in smartphones.

For example, although we can access Channel Quality

Indicator (CQI) through an Android API, its reported value

is always a maximum value of int type, which means CQI is

still a developing function.
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Fig. 2: Correlation coefficients with
different time lags.
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Fig. 3: An example of bandwidth prediction results using ARMA models in (a) 5G
and (b) 4G networks. Vertical dotted lines denote handover events.

Summary: In HYPER, we prefer to use time series

predictive models for bandwidth prediction due to the higher

prediction accuracy. However, while time series predictive

models cannot deal with handover events, we need to use ML

models to assist in predicting. HYPER can adaptively allocate

these two types of prediction models for bandwidth prediction

within appropriate periods. We use ARMA and RF models in

HYPER since (1) ARMA is proved to be as effective as deep

learning approaches for predicting time series [4] and (2) RF

achieves a trade-off between prediction accuracy and overhead,

which is important for online prediction in 5G networks.

III. BACKGROUND & MEASUREMENT STUDY

A. 5G Infrastructure

5G uses multiple frequency bands including mmWave

bands and microwave bands [25]. The mmWave bands at

frequencies of 24 to 53 GHz provide a considerable amount of

bandwidth. However, mmWave’s short wavelength makes its

signals vulnerable to attenuation and blockages [26], leading to

significant data rate variation and shorter deployment distances

between base stations. Microwave 5G radios operate at mid-

band frequencies of sub-6 GHz whose radio signal largely

remains omnidirectional and offers a decent data rate. In our

experiments, mid-band 5G radios are used by the CMCC

carrier to form the basis of initial 5G services. However, to

be compatible with higher frequency bands in the future, the

distance between 5G base stations (≈200 meters) deployed by

CMCC is still much shorter than that of existing LTE networks

(≥500 meters) [1], [29], leading to frequent handover events.

B. Measurement Study

1) Data Collection Methodology: 5G UE. We use two

types of COTS 5G-capable smartphones, HUAWEI MATE30

5G (Hisilicon Kirin 990) and Xiaomi Mi10 5G (Qualcomm

Snapdragon TM865), for 5G cellular data collection. Compar-

ing their performance at the same locations, we have observed

that the measurement results of these phones are consistent.

We thus use MATE30 for all experiments. We confirm that

despite 5G’s high throughput, the device-side processing is

not a bottleneck for MATE30, which is a high-end smartphone

equipped with an eight-core CPU, 8 GB memory, Kirin 990

5G System-on-Chip (SoC) that fully integrates a Balong 5000

5G modem. MATE30 supports both 4G and 5G, allowing us

to compare the throughput performance of these networks. In

our experiments, we adopt the 5G StandAlone (SA) mode that

is supported by CMCC across the city.

5G Monitoring Application. Android 10 [9] is an advanced

Android OS and adds platform support for 5G NR related

information. We are not aware of any commercial Android

application that reports 5G NR-related information. Hence,

we have developed a resource monitoring application based

on Android 10 APIs for COTS 5G smartphones to obtain

related information. We collect the following three categories

of information at a sampling rate of 2 Hz to support our

measurements: (1) Physical information includes system time,

GPS, speed, and the connected cell ID. (2) Upper-layer

information includes 5G service status, network interface, and

addresses, upload and download throughput2, packet loss rate3,

RTT, and the variation of RTT. (3) Lower-layer information

includes RSRP, RSRQ, and SINR.

Server and Experimental Scenario. In our experiments,

we select the HUAWEI Cloud server for speed testing because

it provides a maximum bandwidth of 2 Gbps, which is much

higher than the highest 5G speed we obtained. We upload a

2 GB file to a server instance on HUAWEI Cloud. We drive

in the urban area at a speed of ∼50 km/h and repeat the file

download 15 times without interruption. In total, we recorded

∼700 data samples for the measurement study.

2) Observations: We have analyzed the correlations

between link bandwidth and a set of information.

Past Throughput. Although link bandwidth in 5G networks

is highly dynamic, past throughput is still the most important

information for predicting future bandwidth. Figure 2 shows

the correlation coefficients of link bandwidth time series with

different time lags l, where l ∈ [0,12.5] seconds. We can

observe that the temporal correlation of link bandwidth time

series is significant even at a few seconds. Therefore, we use

the ARMA model in HYPER since it is effective to learn the

function of previously observed values and random noise when

the time series shows strong temporal correlations [4].

2While the state-of-the-art Android OS does not support directly measuring
throughput, we use the total traffic difference between adjacent time slots to
calculate throughput.

3We seldom observe, however, losses of ping packets in our measurement
traces. Almost all measurements in our traces have a packet loss rate of 0.
Hence, we do not take the packet loss rate as a feature. As packet loss is a very
informative and vital metric to reflect the current situation of the network, we
can still easily use it as a feature of HYPER for bad 5G networks.
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Fig. 4: Correlation coefficient of
RSRP, RSRQ, SINR.
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Fig. 6: 5G throughput and the corresponding
moving speeds in a driving scenario.

Handover Events (Cell ID). Similar to LTE networks, a UE

can only connect to one base station in 5G cellular networks.

In a continuous trace, a handover event happens when the cell

ID changes, which means a UE disconnects from one cell

and connects to another cell. There will usually be abrupt

throughput changes during handover since different base

stations may have different bandwidth capacity and resource

scheduling algorithms, and serve for different numbers of

UEs. Figure 3 plots an example of bandwidth prediction

results based on ARMA models in both 5G and 4G networks.

The upper figures show the predicted throughput and ground

truth throughput. The bottom figures show the corresponding

prediction error. We have the following important observa-

tions: (1) The ARMA model can achieve good prediction

accuracy within a specific cell. Most bandwidth prediction

errors can be less than 10%, which shows the effectiveness of

the ARMA model for intra-cell bandwidth prediction. (2) The

prediction error will significantly increase during handover.

This is because the fitting procedure of ARMA assumes a

stationary time series [2], while handover events will usually

lead to significant throughput changes. (3) Comparing to the

LTE networks, handover events happen more frequently in 5G

networks. The number of spikes of prediction errors in 5G

networks is more than twice that in 4G networks. Moreover,

the absolute bandwidth prediction error of 5G networks is

significantly larger since the bandwidth of 5G networks is an

order of magnitude higher than that of 4G networks. As a

result, inaccurately predicted bandwidth will have a greater

impact on 5G networks.

RSRP, RSRQ, and SINR. RSRP, RSRQ, and SINR

are PHY/MAC layer information that measures the network

quality. In COTS smartphones, RSRP, RSRQ, and SINR are

of low fidelity and are reported as integers using Android APIs.

Let {bi} and {pi} denote the link bandwidth and a PHY/MAC

layer information of the i-th second, respectively. Figure 4

shows the correlation coefficients between each PHY/MAC

layer information time series {pi} and link bandwidth time

series {bi+l} with different time lags l ∈ [0,5) seconds.

We can see that the correlation between each PHY/MAC

layer information and link bandwidth is significant but will

rapidly decrease with the increasing number of time lags.

As a result, these data will easily become out-of-date for

bandwidth prediction. We have also found that unlike the 4G

LTE networks [33], the correlation between RSRP and link

bandwidth is relatively less significant than that between the

other two PHY/MAC layer information and link bandwidth.

Inspecting the trace, we observe that the trends of RSRP

and link bandwidth are not consistent at times. This may be

because RSRP values will also be affected by other distinct

factors of 5G networks such as the orientation of 5G base

stations (deployed in the form of panels) [18].

RTT and Variation of RTT. RTT is a typical network layer

information and is highly related to link bandwidth. There is

often a conflict between throughput and packet RTT [16]. We

integrate the ping command into our monitoring application

to measure the RTT to the server. Figure 5 shows the cross-

correlation between link bandwidth and RTT and its variances.

We can see that both metrics have a significant negative cross-

correlation with link bandwidth. Similarly, the correlation will

also rapidly decrease as the time lag increases.

Speed. Due to the density of 5G base stations and the

orientation of 5G signals, moving speed will have a great

impact on bandwidth. Figure 6 shows an example trace

of 5G throughput and speeds in a driving scenario using

measurements collected from commercial 5G networks. Dot

lines in the figure are the handover events. We can see that: (1)

Abrupt speed changes can easily cause significant bandwidth

changes. (2) When driving in urban areas, handover events can

occur in less than ten seconds. As the average moving speed is

around 10m/s, the distance between adjacent 5G base stations

is usually less than 200 meters in our experiments. (3) Another

interesting observation is that handover events usually occur

when speed changes. This may be because the moving speed

often changes at intersections in urban areas where there are

usually more people and UEs sharing the spectrum, leading

to more dynamic signal indicators (e.g., RSRQ, SINR) [29].

Besides, more base stations will be deployed at intersections

and respond to handover events when their signal indicators

are higher than that of the current serving cell [29]. Therefore,

a handover decision will be more likely to be triggered at

intersections with speed changes.

Summary. The above analysis shows that the intra-cell

bandwidth time series has significant temporal correlations.

However, time series predictive models alone cannot work

well for 5G bandwidth prediction due to the frequent

handover events. On the other hand, we have identified several

bandwidth-related information that can be reported by COTS

smartphones, including three upper-layer information (past

throughput, RTT, the variation of RTT), three lower-layer

information (RSRP, RSRQ, SINR), and two physical features

(handover, speed). HYPER uses these features to help improve

the bandwidth prediction performance during handover.
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IV. HYPER DESIGN

A. Intra-cell Model

In HYPER, we use the ARMA model to learn the temporal

correlation of intra-cell bandwidth time series. The general

ARMA model can be modeled as ARMA(p,q), where p
denotes p AutoRegressive (AR) terms and q denotes q Moving

Average (MA) terms. Optimizing the performance of the

ARMA prediction model requires tuning of the parameters

p and q. For each base station, the data used to obtain its

training parameters p and q is the bandwidth time series in

the handover window. We tune the parameters p and q by

a grid search while varying p and q between 0 and 3. We

use the Akaike Information Criterion (AIC) for finding p and

q [3]. AIC offers a relative estimate of the quality of candidate

ARMA models for a given time series. It not only considers

the goodness of fit of an ARMA model, but also considers

a penalty, which discourages overfitting, to help reduce the

complexity of the model. The ARMA parameters p and q
are retained for every step prediction within the same base

station. For each step, we retrain the ARMA model and predict

the bandwidth of the next time slot. This will not introduce

much overhead since the ARMA model is lightweight and the

throughput data for training is limited within a 5G base station.

B. Cross-cell Model

To compensate for the predicted values during handover,

HYPER uses an RF regression model for cross-cell bandwidth

prediction due to its capabilities of requiring low memory

and computation overhead during online prediction, modeling

complex relationships, and avoiding overfitting.

1) Problem Formulation: The regression model takes the

related past information as input to predict the bandwidth

of the next time slot. In other words, the input to train the

regression model is the feature vectors of the past W time slots.

Each feature vector contains all the related features mentioned

in Section III-B2 except for the cell ID information. Let Ft
denote the feature vector at time slot t, an input vector It can

be expressed as It = [Ft−1,Ft−2, ...,Ft−W ]. The related features

have different value ranges and are scaled down to the range of

[0,1]. The corresponding train label is the bandwidth Bt at time

slot t. Let M() denote the prediction model learned offline. The

regression problem can be formulated as Bt = M(It).
2) Cross-cell Prediction: In HYPER, we empirically set

W = 1, which means we use the input vector of the past

single time slot to train the RF model. Detailed prediction

performance using different numbers of past time slots will

be shown in Section V-F. Once the input vectors and the

labels are constructed, we randomly select 70% of the total

inputs as the training data and use the remaining 30% as the

testing data. We perform a grid-based search on the training

set to automatically find the optimal hyper-parameters of the

RF model to maximize the classification accuracy. Once the

RF model is constructed, we use the model to predict the

bandwidth during handover.

Handover RF
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features

Y

NBandwidth 
time series
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handover 
window?

Stationary 
analysis

Pre-trained 
RF model

Predicted 
bandwidth

Online 
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M
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Fig. 7: Overview of HYPER and its workflow.

C. Hybrid Prediction Approach

To adaptively combine the above two models, we propose

a hybrid prediction approach HYPER to achieve online

bandwidth prediction. For a base station, HYPER first uses

the pre-trained RF model to predict the bandwidth after the

handover event. After determining the handover window size,

HYPER will use the data in the handover window to learn

the ARMA parameters p and q. Then HYPER will retrain

the ARMA model at each time slot to predict the intra-cell

bandwidth. Figure 7 shows an overview of HYPER.

It is non-trivial to determine the handover window size.

A larger handover window size with more training data

will lead to more accurate ARMA models but overuse the

RF regression model. To adaptively determine the handover

window size for different base stations, we propose a handover

window adaptation algorithm based on the stationarity of

bandwidth time series. Specifically, after a handover, HYPER

will continuously check the stationarity of past bandwidth time

series within the new base station. At the same time, HYPER

will use the RF model to predict the bandwidth for these

time slots. Once the time series becomes stationary, HYPER

will determine the handover window size, learn appropriate

ARMA parameters of the new base station, and switch to the

ARMA model for subsequent bandwidth prediction. It is worth

noting that although the total time for handover procedures

is small, e.g., less than 200ms [29], the throughput can be

affected for several seconds after handover. This is because

the communication resources may not be scheduled in time

due to the complex cell load [31]. In our experiments, we also

observe that the handover window size is usually in seconds.

HYPER uses a lightweight time series stationary analysis

approach, the Augmented Dickey-Fuller (ADF) test [6], to

quantify the stationarity of a time series. The intuition behind

the ADF test is that it can characterize how strongly a time

series is stationary [8]. We can get two stationary metrics

after running the ADF test on a time series: an ADF value

VADF and a p-value Vp. For the ADF value, it should be a

negative number. If the ADF value is less than a confidence

value T HADF , we can assume the time series is stationary. On

the other hand, a p-value below a threshold T Hp suggests

the time series is stationary. In HYPER, we consider the

bandwidth time series is stationary only when both metrics are

less than the corresponding thresholds. In our current design,

we carefully set T HADF to a confidence value of 1% and T Hp
to 0.5 to ensure that HYPER captures a stationary time series

with great confidence.

Algorithm 1 shows the details of our hybrid prediction

Authorized licensed use limited to: Zhejiang University. Downloaded on July 13,2023 at 02:40:37 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 1 Hybrid Bandwidth Prediction Algorithm

Input: Time series of input vectors I = {I1, I2, ..., It , ...}; Time
series of bandwidth B = {B0,B1, ...,Bt−1, ...}; Time series of
connected cell ID ID= {ID0, ID1, ..., IDt−1, ...}, where IDt is the
connected cell ID at time slot t; Thresholds of ADF value, p-value
and bandwidth changes T HADF ,T Hp,T He; Minimum handover
window size Smin; Pre-trained RF model M()

Output: Predicted bandwidth series B̂ = {B̂1, B̂2, ..., B̂t , ...}
1: startO f Train ← 0, gotPAndQ ← False
2: for t = 1 to ∞ do
3: if IDt != IDt−1 or (B̂t−1 −Bt−1)/Bt−1 > T He then
4: startO f Train = t, gotPAndQ ← False, isStationary ←

False
5: if t − startO f Train < Smin then
6: B̂t = M(It)
7: continue
8: if !isStationary then
9: (VADF ,Vp) = ad f uller(B[startO f Train:(t−1)])

10: if VADF > T HADF or Vp > T Hp then
11: B̂t = M(It)
12: else
13: isStationary ← True
14: if !gotPAndQ then
15: (p,q) = armaOrderSelect(B[startO f Train:(t−1)])
16: gotPAndQ ← True
17: armaModel = ARMATrain(B[startO f Train:(t−1)], p, q)

18: B̂t = armaModel(t)

algorithm. For each time slot, HYPER first uses the cell ID of

the current serving cell to identify a handover event. Once a

handover event is detected, HYPER needs to determine the

handover window size of the new cell. It is worth noting

that the intra-cell bandwidth may also change rapidly due

to the nature of wireless communication and radio resource

scheduling [34]. Therefore, we consider that the relative

bandwidth prediction error of the last time slot larger than

a predefined threshold T He will also trigger the handover

window adaptation process. In HYPER, we empirically set

T He to 1. Next, we define a minimum handover window

size Smin to eliminate unnecessary stationarity tests and ensure

the amount of data for training the ARMA model. For each

time slot after Smin, HYPER calculates the two stationary

metrics VADF and Vp using the ad f uller function available in

the Statsmodels package [20]. When the time series becomes

stationary, HYPER sets the handover window size to the

number of past time slots since the handover event. In practice,

we observe that even in driving scenarios with fluctuating

throughput, most bandwidth time series can be identified as

stationary within three seconds after handover. As a result,

we set Smin to 5 in our experiments. Detailed prediction

performance of different Smin will be shown in Section V-F.

Then HYPER will use the bandwidth time series in the

handover window to calculate the ARMA parameters p and q
for the current cell. Finally, HYPER trains the ARMA model

using these two parameters to estimate future bandwidth.

Inside the handover windows, HYPER uses the pre-trained

RF model to predict the bandwidth.

In HYPER, the RF model will not introduce much com-

TABLE I: Details about the 5G dataset.

Data Samples
23893 samples
(per half-sec throughput with features)

Mobility & Duration
Driving (9 Days), Walking (5 Days),
Stationary (2 Days)

Data Amount 1130 GBs of 5G downloaded data
Cells & Handover 510 cells & 670 handover events

putation overhead. However, the ARMA parameter estimation

process is relatively computation-intensive. On the other hand,

we have also found that the ARMA parameters usually remain

stable in a short time series. Considering both accuracy and

complexity, HYPER only estimates p and q once when the

handover window size is determined for the new cell. Detailed

prediction overhead will be shown in Section V-G.

V. EVALUATION

A. Implementation

We implement the monitoring APP on commercial smart-

phones. From our measurement study, we have found that

most features (e.g., handover, speed, and low-layer features)

collected from commercial smartphones will only change

every few seconds even in high-speed moving scenarios.

Therefore, we limit the sampling rate in our monitoring

application to second-level (i.e., 2Hz) and upload the collected

information to a server every 500ms to remove redundant

data and reduce computational overhead on the phone. We

use a desktop with Intel i7-8700 CPU and 16GB of memory

as the server to deploy HYPER. The server is responsible

for processing the received information and returning the

predicted bandwidth value to the UE. Then the UE can use

the predicted bandwidth to make adaptive configurations for its

applications. We provide a simple video streaming application

and a congestion control application in Section V-B to show

how HYPER can help improve the user experience.

The 5G information of our work is mainly collected in

urban driving scenarios during the daytime and night of 9 days

starting from June 4, 2020. We also collect data in two other

mobility scenarios: walking and stationary. For the walking

scenario, the data were collected on a university campus

(0.7km × 1.2km). For the stationary scenario, we collected

data in a meeting room (8m× 5m) on the campus. All the

three experiment scenarios and the data collection and analysis

devices are depicted in Figure 8. Not surprisingly, we observe

more handover events in driving scenarios than in walking

and stationary scenarios. In summary, the collected datasets

cover a wide range of scenarios, including different times of

the day, locations, and movement speeds. The total amount of

downloaded data is over one TB. The total numbers of unique

cell IDs and handover events are 510 and 670, respectively.

Table I shows the full dataset statistics.

B. Prediction Results & Comparison Study

1) Comparison with ML Regression Model-based Ap-
proaches: We compare the prediction accuracy of HYPER

with prediction approaches that use RF [21], [33], NB, LR,

ANN [14], [15], [23], and RT [30] ML regression models
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Fig. 8: HYPER experimental sce-
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Fig. 9: Bandwidth prediction performance comparison between HYPER and other
approaches.

and state-of-the-art deep learning-based approaches [12], [13],

[17] that uses LSTM for bandwidth prediction. It has been

proved that the training window size will not significantly

affect the prediction accuracy of these models [14], [33].

Considering that using a larger training window size will lead

to a higher computation overhead, we set the window size

to 1 in these approaches. We carefully perform a grid-based

search to find the optimal hyper-parameters when constructing

the ML models. In particular, we implement the LSTM neural

network following PERCEIVE [13] and train the LSTM using

the past 10s input of feature vectors.

Figure 9(a) shows that the median relative prediction error

of HYPER is 10.0%, while the median relative prediction

errors of ML regression models are between 11.5% and 30.2%.

Compared to ML regression model-based approaches, HYPER

improves the prediction accuracy by 13.0%-66.9%. These

ML model-based approaches do not work well due to the

coarse-grained features exposed from the Android OS. We also

observe that the LSTM model does not perform well in our

experiments. This is because the model needs millisecond-

level information to achieve good prediction accuracy [13].

However, as mentioned earlier, most features collected from

commercial smartphones will only change every few seconds

and are second-level information. The LSTM model will

easily include stale features due to the low sampling rate

and frequent handover in commercial smartphones, leading to

poor prediction accuracy. Besides, LSTM-based approaches

require significantly more time for model training/updating

and thus are hard to achieve online prediction for the diverse

and changeable 5G networks. In contrast, HYPER shows

fast and accurate bandwidth prediction results as it carefully

considers the handover events and effectively learns the

temporal correlations inside base stations.

2) Comparison with ARMA Model-based Approaches:
We compare HYPER with the standard ARMA model [2].

The ARMA parameters p and q are selected by varying the

parameters for p and q between 0 and 3. For each time slot,

we retrain the ARMA model using the throughput of the past

5s. After significant throughput changes where the ARMA

model cannot work, we will simply use the last throughput

as the predicted value. We further implement an ARMA-by-

cell model that only uses the past throughput of the current

cell to train the ARMA models. In this model, we also use

the last throughput as the predicted value during handover.

Figure 9(b) shows the prediction results of these two ARMA

model-based approaches. As seen, the ARMA and ARMA-

by-cell approaches achieve median relative prediction errors

of 14.3% and 11.7%, respectively. Results show that using the

past throughput in the same base station to predict the future

bandwidth can achieve higher accuracy. Taking a closer look

at Figure 9(a) and (b), the ARMA-by-cell model performs

slightly better than the RF model, showing the effectiveness

of the ARMA model in predicting 5G link bandwidth.
3) Comparison with HTTP-based Adaptive Streaming Pro-

tocols: Many popular HTTP-based adaptive streaming pro-

tocols will use historical bandwidth records to predict future

bandwidth for video streaming [7], [10], [28]. We make a

comparison study with two existing protocols. One is the

GPAC’s player [7] that uses the last seen bandwidth as

the prediction value for the next video segment. Another

is FESTIVE [10], which uses smoothed harmonic mean of

historical throughput measurements over a time window as

the prediction. As recommended in [10], we use the harmonic

mean over the last 20 samples to predict the future bandwidth.

Figure 9(c) shows the comparison results of HYPER and the

two adaptive streaming protocols. Results show that compared

to GPAC and FESTIVE, HYPER can improve the median

relative prediction errors by 13.0% and 57.4%, respectively.

In particular, the FESTIVE algorithm cannot perform well

because it results in severe bandwidth under-utilization with

the large bandwidth fluctuation of 5G networks.

C. Uplink Performance

We collect a small uplink dataset with 1,000 samples to

show the effectiveness of HYPER in 5G uplink. During the

experiment, we continuously upload file data to the server and

conduct walking tests on the campus with normal walking

speeds. We use 80% samples to train the RF model and use the

remaining samples to evaluate the uplink bandwidth prediction

performance of HYPER. Figure 10 (left) shows the ground

truth and predicted uplink bandwidth. We can also observe

that there are significant uplink throughput changes during

handover. Figure 10 (right) shows the corresponding uplink

bandwidth prediction error. As seen, HYPER can achieve a

median relative prediction error of 5.1%, which is significantly
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better than that (i.e., 10%) of 5G downlink. This is because

the bandwidth variation of the uplink is much smaller than

that of the downlink, which makes the prediction results more

accurate.

D. Case Study 1: Video Streaming
We compare the prediction performance of HYPER, GPAC,

and FESTIVE in a video streaming application. A UHD video

with a 120 FPS frame rate is split into 0.5s segments and

stored on the server. Each segment is encoded into four

copies with different resolutions (1080P, 4K, 8K, 16K). For

the four resolutions, we conservatively define the correspond-

ing bandwidth ranges as [0,80], [80,320], [320,640], and

[640,∞] in Mbps, to prevent video stalling due to remarkable

bandwidth fluctuations. The client specifies the resolution to

download each segment based on the predicted bandwidth.

Figure 11 shows the percentages of downloaded segments

with the best resolution when using different approaches for

video streaming. Comparison results indicate that HYPER can

reduce the video stalling time by up to 2.6% for state-of-the-art

adaptive video streaming applications using 5G networks.

E. Case Study 2: Congestion Control
Another important follow-up application of bandwidth

prediction is congestion control. With an accurately predicted

bandwidth, senders can match their sending rate to the avail-

able bandwidth capacity precisely and rapidly. We propose an

end-to-end HYPER-based congestion control algorithm that

adaptively sets the senders’ rates to the predicted bandwidth

of HYPER. We have preliminarily evaluated our HYPER-

based congestion control algorithm using traces collected from

commercial cellular networks. We compare our algorithm with

a leading congestion control algorithm BBR [5].
Figure 12 shows the minimal, 25th, median, 75th, and

maximal percentile throughputs and delays of our HYPER-

based congestion control algorithm and BBR. We can observe

that HYPER helps achieve lower delay while ensuring

comparable throughput with BBR. This is because, with

accurate predicted bandwidth information, our algorithm will

introduce less packet congestion, thus reducing the average

packet transmission delay. We can also observe that comparing

to BBR, our algorithm achieves low variance in both delay and

throughput by accurately estimating the bandwidth capacity.

F. Impact Factors
1) Impact of RF Window Size: The information in different

numbers of past windows used to train the RF model will affect

the prediction performance during handover. To evaluate the

impact of RF window size, we use historical information in

the past 1-5 time slots (i.e., 0.5s-2.5s) to train the RF model.

Figure 13(a) shows the prediction error of different RF window

sizes. Results show that adding more historical data does not

improve the prediction accuracy. On the contrary, the accuracy

may be degraded. The reason might be that historical related

features can quickly become out-of-date in rapidly changing

cellular networks. Using features further away in the past

will degrade the prediction accuracy. Moreover, using a larger

RF window size will lead to a higher computation overhead.

Therefore, we set the RF window size to 1 in HYPER.

2) Impact of Minimum Handover Window Size: We evalu-

ate the performance of different minimum handover window

sizes Smin in Algorithm 1. An appropriate Smin can effectively

reduce the prediction overhead and maintain a good accuracy

of the ARMA model. We set the minimum handover window

size to 3, 5, 7, 9, and 11 in our experiments. Figure 13(b)

shows that the median relative prediction errors will increase

when the window size is larger than 7. This is because most

of the final handover window size is within three seconds in

our experiments. Large minimum window size will overuse

the RF model in HYPER, thereby reducing the prediction

accuracy. Considering that using a smaller Smin will introduce

more computation overhead for stationary tests, we set k = 5

(i.e., 2.5s) in our experiments.

3) Impact of Mobility: Higher mobility scenarios will in-

troduce more rapid link bandwidth changes and more frequent

handover events. To investigate the prediction performance

in different mobility scenarios, we use the data collected in

three different mobility scenarios (i.e., stationary, walking, and

driving). Figure 13(c) shows the bandwidth prediction errors

in these scenarios. Results show that the overall prediction

result under lower mobility scenarios is more accurate than

that under driving scenarios. Interestingly, we can see that

the median prediction errors in stationary scenarios are only

slightly better than other dynamic scenarios. This is because

the 5G link bandwidth is naturally highly dynamic due to

varying numbers of UEs in the base station. We also observe

that handover events occur even in the stationary scenario. This

is because the signal indicator of the current serving cell may

decrease due to many practical reasons, for example, some

new UEs are accessing the cell. When the signal indicator of

the current serving cell is lower than that of a neighboring

cell, the handover procedure will be triggered.
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Fig. 13: Bandwidth prediction error of HYPER with different impact factors. Impact of (a) RF window size, (b)
minimum handover window size, (c) mobility scenario, (d) time, and (e) carrier.

TABLE II: Prediction delay of HYPER. Time is the
prediction delay of each phase in milliseconds. Prop refers
to the proportion of each phase in the total trace.

Scenarios
Phases

P1 P2 P3 P4 AVE

Driving
Time 7.035 23.021 1043.937 15.281

62.103Prop 27.6% 9.7% 4.7% 58.0%

Walking
Time 7.654 9.525 921.842 10.179

37.093Prop 16.4% 3.3% 3.0% 77.3%

Stationary
Time 6.969 8.173 722.629 1.321

9.674Prop 5.6% 1.5% 1.1% 91.8%

4) Impact of Time: To evaluate HYPER’s performance at

different times, we use two datasets collected in similar driving

scenarios during the daytime and night. Figure 13(d) shows

that the median bandwidth prediction errors of daytime and

night are 11.9% and 9.5%, respectively. Results show that

HYPER performs better at night. This is because there are

fewer cellular users at night and the bandwidth will be less

affected by other UEs in the same base station.

5) Impact of Carrier: We have also collected a small

dataset (≈1000 samples) in nearby 5G cellular networks

deployed by China Telecom to investigate whether HYPER

can be used for another carrier network. Figure 13(e) shows

that HYPER can achieve comparable bandwidth prediction

accuracy in different carrier networks. This is because the 5G

networks deployed by CMCC and China Telecom in the city

have similar NR network architecture and base station density.

G. HYPER Overhead

As shown in Algorithm 1, the online prediction process can

be divided into four phases: (1) Using the RF model within

the minimum handover window during handover; (2) Running

the ADF test and using the RF model outside the minimum

handover window during handover where the time series is not

stationary; (3) Estimating the ARMA parameters, training the

ARMA model, and predicting using the ARMA model at the

time when the time series becomes stationary; (4) Training

the ARMA model, and predicting using the ARMA model

for intra-cell time series. We insert timestamps in the code

to estimate the prediction delay of each phase in different

mobility scenarios. For each scenario, we run HYPER 100

times to calculate the average prediction delay.

Table II shows the proportion and prediction delay of each

phase and the average prediction delays in three different

mobility scenarios. The proportions of using the ARMA model

and the RF model are different in different mobility scenarios.

For low mobility scenarios, the ARMA model is preferred

while for high mobility scenarios, the RF model will be used

more. This is because higher moving speeds will lead to more

frequent handover events, which will increase the frequency

of using the RF model. Results also show that the prediction

delays of most phases are within 30ms except for phase 3

due to the relatively computation-intensive ARMA parameter

estimation process. In practical deployment, the delay of phase

3 can be significantly reduced if the ARMA parameters p and

q of nearby base stations can be pre-measured. Comparing the

average prediction delays of these three scenarios, the driving

scenario is the worst because more time-consuming phases

during handover (i.e., phase 2 and phase 3) will be included.

However, the proportions of these time-consuming phases are

less than 10% in all scenarios and will not introduce much

prediction delay. The average prediction delays in all scenarios

are less than 100ms, which is much smaller than the data

collection interval in HYPER (i.e. 500ms) and is sufficient for

online prediction.

During each time slot (i.e., 500ms), the collected data size is

around 150 bytes and the returned data size is around 8 bytes.

In total, the data transmission overhead is around 2.6 Kbps

and is negligible for commercial 5G networks. According

to [29], the energy cost is around 1.3 mJ/s in HYPER and

will not significantly deplete the smartphone’s battery. Note

that because HYPER uses lightweight prediction models, it

can also run entirely on common smartphones at the cost of

slightly extra energy consumption.

VI. IMPLICATIONS AND LESSONS LEARNED

In this section, we give a summary of the key observations,

implications, and lessons learned from our experiments.

Observation 1: Existing bandwidth prediction approaches

cannot work well in 5G networks while HYPER achieves good

prediction performance in all scenarios we have explored.

Implication 1: Although the prediction accuracy of HYPER

is better than state-of-the-art approaches, there is still a gap

compared to the actual bandwidth. Considering that cellular

network performance may be affected by other commercially

unobservable factors, such as radio resource scheduling and

other UEs sharing the spectrum, the prediction accuracy can

be largely improved with more detailed PHY-layer information

exposed from the 5G chipset, such as the number of allocated

resource blocks.
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Observation 2: Handover can occur in stationary scenarios.

Implication 2: This indicates that the ARMA model may

not work even in stationary scenarios. It is a general approach

to integrate ARMA and RF models to cooperatively predict

the bandwidth for different scenarios.

Observation 3: The environment has a large impact

on prediction performance. HYPER performs diversely at

different times due to the different numbers of UEs inside

each base station and the different traffic of each UE.

Implication 3: When predicting at different times or places,

it is suggested to use features collected in similar scenarios to

train RF models. To reduce the training cost, we can integrate

transfer learning [32] into HYPER for cross-site training.

Observation 4: Stale throughput information of past base

stations can affect the prediction accuracy of learning models.

Implication 4: Handover information should be used to

train effective learning models for each cell.

VII. CONCLUSION

In this paper, we first conducted a primary measurement

study in commercial 5G networks to learn the temporal

correlations of bandwidth time series and identify bandwidth-

related features. We then propose HYPER, a hybrid bandwidth

prediction approach that combines an ARMA model and

an RF regression model to predict intra-cell and cross-cell

bandwidth, respectively. We propose a handover window

adaptation algorithm in HYPER to enable accurate bandwidth

prediction in 5G networks with frequent handover events.

Extensive experiments using COTS smartphones in commer-

cial 5G networks show that HYPER outperforms state-of-the-

art bandwidth prediction approaches. Results also show that

HYPER can work well in various mobility scenarios without

introducing much computation overhead.
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