
TinyCSI: A Rapid Development Framework for

CSI-based Sensing Applications

Yuxiang Lin, Wei Dong, Bingji Li, Yi Gao

College of Computer Science, Zhejiang University, China

Alibaba-Zhejiang University Joint Institute of Frontier Technologies

Email: linyx@zju.edu.cn, dongw.cs@gmail.com, lbj123kst@zju.edu.cn, qhgaoyi@gmail.com

Abstract—Channel State Information (CSI)-based wireless
sensing has recently attracted extensive attention from both
academia and industry. However, it is still challenging and
time-consuming to develop a CSI-based sensing application due
to the use of complex signal processing algorithms and the
requirements of accuracy and responsiveness. In this paper, we
present TinyCSI, a rapid development framework for CSI-based
sensing applications. With TinyCSI, developers only need to write
a main script to determine the CSI collection settings and a
callback function to process the collected CSI signals using the
well-abstracted Matlab/C-based library, without dealing with the
connection/transmission details of the sensing nodes. To achieve
fast performance tuning, TinyCSI also provides three working
modes for different deployment requirements: a remote mode
for fast iteration of the sensing algorithms and their parameters,
an efcient mode for making full use of computing resources
and improving sensing responsiveness, and a standalone mode
for ofine running sensing systems on individual nodes. We
implement three representative demos and conduct real-world
user studies to show the workows and benets of TinyCSI.
Experimental results show that TinyCSI helps reduce the lines
of code signicantly compared to the original implementation.
More importantly, the efcient mode can generate an optimal
computing resource allocation solution and signicantly improve
the sensing responsiveness.

I. INTRODUCTION

When the transmission of wireless signals is affected by

adjacent objects, analyzing the wireless signal can provide

sensing capability for the objects. This radar-like technique is

known as wireless sensing, and has been under active research

during the past ten years. In particular, researchers found that

the ne-grained Channel State Information (CSI) provided

by Commercial Off-The-Shelf (COTS) Wi-Fi devices [1,

2] could be used in many sensing applications, including

human detection [3–7], activity recognition [8, 9], gesture

recognition [10, 11], localization and tracking [12–16].

Although many sensing algorithms have been proposed for

various applications, developers are still confronted with two

difculties in practice:

First, it is time-consuming to rapidly build novel sensing

systems or customize existing ones for specic scenarios.

Existing CSI-based sensing systems are tightly coupled

with their applications. This coupling requires developers

to know all stages for CSI signal processing including 1)

preprocessing, 2) motion detection and segmentation, and

3) other application-specic algorithms. Among these stages,

each of them has plenty of different algorithms and details.

Second, it is difcult to fast tune various system options

and execution modes to achieve high sensing accuracy and

high sensing responsiveness. It is labor-intensive to try every

possible approach even for an experienced developer with

detailed knowledge of CSI processing algorithms. For a junior

developer, it is even harder for her/him to understand how one

stage in the implementation affects the nal performance.

To address the above two difculties, we propose TinyCSI,

a framework for the rapid development of CSI-based sensing

applications.

To enable rapid development, we clearly split sensing

data collection and data processing in TinyCSI: users are

only required to dene a main script for determining CSI

collection settings of the node and build a callback function

for essential CSI signal processing. More importantly, we

have implemented a sensing library covering 11 different API

categories, after investigating more than 30 existing CSI-based

sensing applications. Our library covers the three stages of CSI

signal processing and is rich enough to support more than 60%

apps from the literature. Developers can quickly invoke these

APIs for rapid implementation. We also allow extending our

library with customized APIs or by incorporating other third-

party API implementations.

To facilitate performance tuning, TinyCSI provides different

working modes: In the remote mode where all signal process-

ing is performed at the server-side, developers can focuses

on trying different algorithms or tuning different parameters

to achieve the best sensing accuracy. In the efcient mode,

TinyCSI can automatically partition different components (i.e.,

APIs) between the sensing device and the server, resulting

in the highest sensing responsiveness while preserving the

sensing accuracy. Compared with previous CSI-based sensing

work, this mode is a major advantage of TinyCSI. An

additional standalone mode is also provided for cases where

server processing is not available.

We have implemented three representative demos using

TinyCSI as references for developers. These demos cover the

three major categories of CSI-based sensing applications, i.e.,

motion detection, location awareness and CSI ngerprinting.

These demos show the general system development process

and some implementation details using TinyCSI. The im-

plementations of the three demos show that TinyCSI helps

reduce up to 93.9% of the lines of code on average. We

evaluate the performance of the efcient mode since it is

���

�����*&&&���UI�*OUFSOBUJPOBM�$POGFSFODF�PO�.PCJMF�"E�)PD�BOE�4FOTPS�4ZTUFNT�	."44

��������������������¥�����*&&&
%0*���������."44����������������

2
0

2
0

 I
E

E
E

 1
7

th
 I

n
te

rn
at

io
n

al
 C

o
n

fe
re

n
ce

 o
n

 M
o

b
il

e
A

d
 H

o
c

an
d

 S
en

so
r

S
y

st
em

s
(M

A
S

S
)

| 9
7

8
-1

-7
2

8
1

-9
8

6
6

-8
/2

0
/$

3
1

.0
0

 ©
2

0
2

0
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0

9
/M

A
S

S
5

0
6

1
3

.2
0

2
0

.0
0

0
7

3

Authorized licensed use limited to: Zhejiang University. Downloaded on October 17,2022 at 02:32:58 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Three major types of CSI-based sensing applications.
Motion detection Location awareness CSI ngerprinting

System Method Scenario System Method Scenario System Method Scenario

FIMD [7] Cluster Lab & corridor Pilot [15]
Maximize a

priori probability
Lab & lobby CARM [8]

Hidden
Markov Model

Lab &
apartment

SIED [4]
Hidden

Markov Model
Ofce &

meeting room
D-MUSIC [12]

Revised
MUSIC algorithm

Meeting room,
ofce & lobby

BodyScan [9]
Support

Vector Machine
Lab & outdoor

PADS [6]
Support

Vector Machine
Classroom, ofce

& corridor
LiFS [16]

Solve a power
fading model

Home, library
& classroom

WiAG [17]
k-Nearest
Neighbors

Lab

Omni-PHD [3]
Earth Mover’s

Distance
Hall & lab FILA [14]

Solve a
distance model

Chamber, lab, hall
& corridor

WiFinger [10]
Dynamic Time Warping
+ k-Nearest Neighbors

Lab

DeMan [5] Threshold-based
Classroom
& lab

SpotFi [13]
MUSIC
algorithm

Whole oor
of a building

SignFi [11]
Convolutional
Neural Network

Lab & home

a major advantage of TinyCSI. The remote and standalone

modes without fast tuning are usually the development modes

of previous work. Our experimental results show that for the

three representative demos, the efcient mode decreases the

sensing delay by 33%-44% relative to the standalone mode,

and 9%-18% relative to the remote mode. Real-world user

studies have shown that TinyCSI signicantly reduces their

development time for building their prototype systems. Results

also show that TinyCSI incurs acceptable overhead in terms

of execution time and program space.

We summarize the contributions of this paper as follows.

(1) We present TinyCSI, the rst rapid development

framework for CSI-based sensing applications. We have made

TinyCSI open source 1.

(2) We provide an efcient mode and formulate the resource

allocation process as an optimization problem to optimize the

sensing responsiveness. We also provide two other modes,

e.g., a remote mode and a standalone mode, to facilitate

performance improvement in different development phases.

(3) We implement three representative CSI-based sensing

applications and conduct user studies to evaluate TinyCSI.

Results show that TinyCSI can signicantly reduce the lines of

code and sensing delay, without introducing much overhead.

II. RELATED WORK

A. CSI-based Sensing Application

In modern Wi-Fi networks, the communication channel

using Orthogonal Frequency Division Multiplexing (OFDM)

comprises of multiple orthogonal subcarriers at different

frequencies [18]. CSI captures how wireless signals propagate

from the transmitter to the receiver at a granularity of the

subcarrier level. CSI-based sensing systems record the CSI of

one or more wireless links and then provide context-aware

computations. As shown in Table I, we classify existing CSI-

based sensing applications into three major categories, i.e.

motion detection, location awareness and CSI ngerprinting.

Motion detection systems continuously detect whether there

is an object walking in the monitoring area based on various

indicators and algorithms [3, 5]. Motion detection usually

serves as the basic module in complex CSI-based sensing

systems for saving energy.

Location awareness systems can either localize an object in

the monitoring area or further track the continuous movements

of the object. Many recent works extract Angle-of-Arrival

(AoA) from CSI measurements to localize a target [13] while

1TinyCSI: https://github.com/ZELK001/Tinycsi-csirapiddevelopment

some work directly extracts the position information with

different mathematical models (e.g., power fading model [16]

and distance model [14]).

CSI ngerprinting systems map the extracted features to

different activities [8] or gestures [11] to realize novel

sensing applications such as activity identication and gesture

recognition. The property is that different actions will lead

to different frequency-selective wireless fading, which can be

well characterized by the ne-grained CSI.

The algorithm selection and parameter determination pro-

cess of the above sensing systems usually take a signicant

amount of effort. Moreover, most of them are tested in

a limited number of scenarios. Once the environment has

changed, system parameters or even some algorithms need

to be updated to accommodate the new scenario. The lack of

rapid development hampers the deployment of these sensing

systems. TinyCSI is designed to solve these problems by

providing appropriate API abstractions and a user-friendly

GUI for fast tuning of algorithms and parameters.

B. Rapid Development System

There exist several rapid development libraries/framework-

s/platforms. However, all of them have very different goals

from TinyCSI. TinyLink [19] is a holistic system for the

rapid development of IoT applications and uses a top-down

approach for both hardware and software designs. CITA [20]

and CAreDroid [21] are rapid development systems for

applications on smartphones. LibAS [22] is a cross-platform

framework to ease the development of acoustic sensing

apps. Different from them, TinyCSI aims to facilitate the

development of CSI-based sensing systems. In addition, the

sensing algorithms of these systems entirely run either on the

sensing devices or on the server. Differently, we have designed

an efcient working mode in TinyCSI to help make full use

of computing resources and reduce the overall sensing delay.

To the best of our knowledge, TinyCSI is the rst framework

where developers can rapidly build their CSI-based sensing

applications. An important advantage of TinyCSI is that it

provides three different working modes for developers. After

the rapid validation of their sensing algorithms, developers can

rapidly deploy their systems in one of the three working mode

to meet different deployment requirements.

III. TINYCSI OVERVIEW

Figure 1 illustrates the overview of TinyCSI. Developers

only need to develop a main script to determine the CSI

collection settings for sensing node and a callback function

to process the continuous CSI signals.

���

Authorized licensed use limited to: Zhejiang University. Downloaded on October 17,2022 at 02:32:58 UTC from IEEE Xplore. Restrictions apply.







3

45567

894:

;9

76

<9=

>?

<>:7

4:

46

@5



A??5



45



476B

894:

4

<>:

>?

C7

3

B

4

C7

;9

:DB7

D5

@7D57E

<D9

F5

G5

4

<D55

<5

5C7

;9

AH

D687?E

@D

476

4975



4

IF:

894:

;9



Fig. 1: TinyCSI overview.
The developers can rapidly validate their algorithms and

parameters in the remote mode, and then optionally nalize the

system to the efcient mode or the standalone mode according

to the requirements.

In the remote mode, TinyCSI provides a rapid prototyping

environment, including a GUI for visualization and an under-

lying SensingServer structure for control. The remote mode

can help developers intuitively make aware of underlying

channel changes and their dependence on various factors

(user movement, environment changes, etc.). With the API

library and visualization of TinyCSI, developers can improve

their fundamental understanding of CSI sensing and rapidly

determine their callback functions (including both algorithms

and parameters) to achieve good sensing accuracy.

The efcient mode is a major advantage of TinyCSI. In the

efcient mode, our framework is able to optimize the resource

allocation scheme for the designed application. Specically,

TinyCSI rst links the callback function with predened APIs

in the library and then provide a TinyCSI solver for resource

allocation. TinyCSI solver puts all detected APIs and their

predened proles (including the time, memory and energy

cost of each API on each computing resource) as its input, and

automatically allocates these APIs to their appropriate places

for processing.

In the standalone mode, the callback function will be

entirely transmitted to individual nodes and can be directly

executed with the Matlab library of TinyCSI. For devices

that only support C, TinyCSI can automatically transfer the

developed Matlab callback function to C. Developers can also

use the C-based TinyCSI library to reproduce the callback

function. TinyCSI integrates the MEX tool [23] in Matlab to

help remotely tune the C-based callback function.

IV. TINYCSI DESIGN

In this section, we will rst introduce the library design in

TinyCSI. Then we will describe the three working modes of

TinyCSI in detail and its expected development ow.

A. Extensive library

To provide widely-used APIs, we have investigated more

than 30 existing CSI-based sensing systems that belong to the

three major application types listed in Table I. We observe

that these systems usually need a preprocessing stage and a

motion detection stage before the essential sensing stage (if

any). We began with a coarse-grained decomposition for each

stage of CSI signal processing. However, a black box design

like CSISensing.onMotionDetection(threshold, callback) will

lose the exibility of adding extra signal processing algorithms

and enable little code reuse. We then progressively split these

components up in order to reach the desired granularity for

further reuse. For example, the activity recognition system

CARM [8] and the user identication system WiID [24] both

use a PCA denoising approach, which can therefore be reused.

TinyCSI allows developers to preserve the programmability

for customizing sensing algorithms via providing 42 basic and

commonly used signal processing APIs in the library in both

Matlab and C. As shown in Table II, we group them into 11

categories by the functionalities. Our current APIs can cover

more than 60% of the investigated systems. Each category

contains interchangeable components for developers to choose.

For example, while CSI-based sensing applications usually

require a lot of calibration to reduce environmental noise and

interferences, TinyCSI provides seven kinds of lters (e.g.,

Butterworth lter, PCA lter, etc.) in the Filter category for

signal preprocessing. Developers can select the most suitable

lter for their applications after multiple trials. The remaining

uncovered systems include either infrequently invoked APIs

or complex algorithms that we have not implemented yet due

to the limited development time.

The library can be easily extended since all the APIs are

based on standard C and Matlab. For developers who want

to add their own components, they only need to encapsulate

their self-designed algorithms into function les (i.e., .c le

or .m le) with input and output in the required format. We

believe that our library can have important implications and

guidance for developing new APIs. Developers can also make

improvements based on our APIs since we have made the

entire library open source. For example, if a developer want

to extend the MUSIC algorithm to provide both AoA and

ToA estimations [12, 13], she/he only needs to rewrite the

steering vector, the received signal vector, and the spectrum

function in the original MUSIC API, which is much faster than

writing from scratch. In addition, many third-party libraries,

e.g., LibSVM [25], can be directly integrated into TinyCSI due

to the compatibility of C and Matlab. After being integrated

into TinyCSI, these extended library functions can also benet

from the three working modes for fast performance tuning.

B. Developer Code

The main script should include the basic collection param-

eters, such as sample rate and duration. Necessary parameters

for the callback function, such as motion detection threshold,

can also be initialized in the main script. Among these

settings, parameters that will affect the sensing results can be

initialized as global parameters, which can later be updated

with a GUI for fast tuning. At the end of the main script,

a SensingServer object should be created with a predened

script SensingServer.m to invoke the callback function.

���

Authorized licensed use limited to: Zhejiang University. Downloaded on October 17,2022 at 02:32:58 UTC from IEEE Xplore. Restrictions apply.

TABLE II: API categories in TinyCSI.
Sampling Measurement Filter Phase Subcarrier Statistical Feature Frequency Feature Time Feature Space Feature Supervised Learning Unsupervised Learning

1 6 7 2 2 10 3 2 2 5 2

4764

54J IF:

3
K:KLK7

465

4:7

>5

D5

G7D=5

45567M

5

4:

Fig. 2: The structure of SensingServer.m.

The callback function focuses on processing the collected

CSI measurements and returning the sensing results. Devel-

opers can specify callback function logic using the well-

abstracted API library, ignoring the node connection/transmis-

sion details. They only need to develop some glue code to

combine the required APIs for their systems (see Section VI-A

for how to design a main script and a callback function).

C. Remote Mode

In the remote mode, TinyCSI will rst create a Sens-

ingServer object with SensingServer.m to take over the entire

sensing system based on the main script. The SensingServer

object plays an important role in hiding the connection/-

transmission details of the sensing nodes. Figure 2 shows

the structure of the SensingServer.m. This SensingServer is

a main primitive predened in TinyCSI to trigger the callback

function when CSI data is transmitted to the server. Inside

the SensingServer, TinyCSI creates a Java socket interface

exported as a ControlServer.jar le to control the sensing

node. Through the socket interface, the server can send control

commands (e.g., start, update and stop) and collection settings

dened/updated in the main script to the node in the form

of an automatically generated shell script. Then the node

continuously collects and transmits the CSI measurements to

the server. SensingServer will record the CSI measurements

into a FIFO le and show them in the GUI. Besides, the GUI

includes gures showing CSI changes and predened features

(if any) used in the callback. For a user-specied subcarrier,

we will further show its detailed amplitude changes, frequency

domain representation, and some basic signal information (e.g.

SNR and variance).

Besides signal visualization, the GUI also supports the

real-time update of some important parameters (i.e., CSI

collection settings and global parameters) for a better sensing

performance. When modifying the parameters (e.g. sample

rate, time duration, etc.) in the text elds and click Update

button in the GUI, GUI.m will trigger a built-in system call

to send the new CSI collection setting to the node through

the Java socket interface. Inside the GUI.m, TinyCSI uses the

assigned callback function Callback.m to process the received

signals. The received CSI data will be segmented into small

pieces in the backend. The window size of each piece will

affect both the sensing results and computation overhead,

and should also be carefully tuned with the GUI. Finally,

each segment will be sent to the callback function, which is

responsible for calculating the sensing results. A conceptual

callback function of a motion detection system can be: ag =

compare threshold(get var(lter(received signal))). The de-

tection ag (i.e. true or false) will be calculated for each signal

segment and updated in the GUI. A complete code example

of using TinyCSI to implement a real motion detection system

is provided in Section VI-A.

Our remote mode design aims to help developers focus

on building the essential sensing algorithm and tuning the

parameters rapidly. We choose to implement the remote

mode with Matlab because it provides several useful signal

processing and visualization tools.

D. Efcient Mode

The efcient mode is designed to achieve the highest

sensing responsiveness without losing sensing accuracy. In the

efcient mode, TinyCSI will utilize the innate computational

capability of both the sensing node and the server.

Determining where these separated APIs should be executed

is essentially an optimization problem. This optimization is

often ignored by previous CSI-based sensing work, which

collect CSI data and transmit them online or ofine to the

server for later computation. Instead, TinyCSI succeeds in

achieving the minimal sensing delay while preserving the

sensing accuracy. Different from existing resource allocation

approaches [26, 27], there are multiple special dependencies

need to be considered in TinyCSI: 1) the APIs in a sensing

task have dependencies, 2) the nal results may depend on

the outputs of multiple tasks (e.g. demo 2 in Section VI-B).

These differences prevent existing methods from being used

directly.

We propose a TinyCSI solver, which takes the proles

of these separated APIs as the input to the global joint

optimization problem. Since sensing delay can easily affect

the user experience, we take the overall time cost as the

optimization criterion in our current design. Formally, TinyCSI

solver solves an Integer Linear Programming (ILP) problem

to generate the allocation results. The optimization objective

can be formulated as:

Min
∑

i,r

xi,rti,r +
∑

j

Fmap(xj)

wtrans

, (1)

where

• xi,r denotes the i-th API in the callback function will be

processed on computing resource r ∈ {node, server}.
• xj indicates the j-th API which needs to be transmitted

to other computing resources.

• ti,r denotes the time consumption for performing the i-th

API on resource r.

• Fmap() is a linear function mapping the remotely

executed API to the size of the application data (i.e. the

input of the execution API) needed to be transmitted.

• wtrans is the most recently estimated transmission speed

of the network in the unit of Kbps.

���

Authorized licensed use limited to: Zhejiang University. Downloaded on October 17,2022 at 02:32:58 UTC from IEEE Xplore. Restrictions apply.

The objective expresses the estimated overall time consump-

tion for executing these APIs on the assigned computing

resources plus the time needed to transmit data for remote

execution. The optimization process is also subject to the

following hardware constraints (i.e., energy and memory

limitation of nodes) and software constraints (i.e., continuity

and concurrency of the system):

(1) Nodes are usually energy-limited. The total energy

consumption for CSI collection, API execution and data

transmission on the node must not exceed a threshold η:

s.t. pcolf+
∑

i

xi,nodeei,node+
∑

j

Fmap(xj)etrans ≤ η, (2)

where pcol is the estimated average power in mW for collecting

a CSI measurement and f is the sample rate. xi,node denotes

the i-th API will be processed on the node and ei,node
denotes the measured energy consumption for executing the

i-th API on the node. etrans is the recently measured energy

consumption of the node in mW for transmitting 1KB data to

the network.

(2) Nodes usually have limited memory. The total memory

cost on the node should also less than a threshold M :

s.t.
∑

i

xi,nodemi,node ≤ M, (3)

where mi,node denotes the memory cost of the i-th API.

(3) Heavy tasks assigned on the node may not be handled

in time due to its limited computational capability. When

transmitting the input/output data, terrible network conditions

will also affect the sensing delay. To ensure the continuity

of the sensing system, the total execution time for processing

APIs locally and remotely, as well as the data transmission

time, should all be less than a time slot T :

s.t. ∀r
∑

i

xi,rti,r ≤ T,
∑

j

Fmap(xj)

wtrans

≤ T. (4)

(4) For each sensing task, the total number of APIs executed

among related resources must be equal to the number of APIs

N separated from user’s callback function:

s.t.
∑

r

xi,r = N. (5)

The last two constraints also help build a pipeline for the

streamed CSI data to deal with the input/output dependency

between APIs. APIs from the same pipeline stage can run

in parallel across different threads (depend on the allocated

resources) to further improve system efciency.

The above thresholds η,M , T need to be adjusted according

to different sensing applications, whose user will certainly

have different requirements. At present, we manually set these

thresholds to empirical values for each application. Since

automatic threshold adjustment based on user experience is

another direction of work, we will consider it as possible

future work of TinyCSI. It is also worth noting that our

optimization process needs to be executed only once (unless

the network transmission speed wtrans changes signicantly)

on the server for a sensing application. Therefore, we can

utilize any heavy optimization algorithms in our TinyCSI

solver to nd the optimal scheduling solution. We nally select

the standard optimization tool lp solver [28] to solve the above

optimization problem.

E. Standalone Mode

In contrast to the above two modes, the standalone mode

allows sensing systems to run on individual nodes without

connecting to a remote server. Since the sensing nodes usually

have limited computing capacity, this mode is suitable for

systems with low computation overhead. For most kinds of

nodes (e.g. laptop, desktop) that support Matlab, the entire

sensing system (except the GUI) can be directly deployed on

them. For nodes (e.g. development board) that only support

C, TinyCSI also provides two complete system migration

approaches. The rst approach is to let developers reproduce

the callback function directly in C with the C-based TinyCSI

library. In the meanwhile, the developers are required to

set the CSI collection settings in the form of a JSON le

manually. TinyCSI provides a JSON parser JSONParser.exe to

help export the sensing congurations to the node. Then CSI

data will be collected according to the settings and processed

with the C-based callback. The second approach is to transfer

the Matlab callback to C via Matlab Coder API [29] and the

TinyCSI library. The transferred C-based callback has the same

function signature and can be directly called by the node.

Tuning in the standalone mode is especially important

since these standalone systems can be deployed in various

environments. For nodes support Matlab, it is easy to turn

back to the remote mode for parameter tuning. However, it is

challenging for nodes only support C to tune/debug the sensing

callback locally due to the lack of proper signal visualization

support. To solve this problem, TinyCSI reuses MEX [23] in

Matlab for tuning the C-based callback. Specically, TinyCSI

rst transmits the C-based callback to the server. Then TinyCSI

encapsulates the C-based callback as a MEX le and puts it

into the SensingServer object (i.e., replacing Callback.m with

the C-based callback). In this way, the streamed CSI data

will be processed by the transmitted C-based callback with

visualization support, which helps debug the C-based callback.

V. IMPLEMENTATION DETAILS

In our developed demos, we encapsulate a HummingBoard

Pro (HMB) mini-computer [30] (1.2GHz ARM Cortex-A9

processor and 1GB RAM) equipped with an off-the-shelf Intel

5300 NIC as the sensing node. Figure 3 shows the appearance

and components of the sensing node, which is easy and

feasible to be deployed anywhere. The CSI tool [1] is installed

on each node for CSI collection. We use a commercially

available router NETGEAR JR6100 as the AP. While TinyCSI

can work well on any WiFi channel in both the 2.4 GHz/5 GHz

bands, we use the 5 GHz band in our experiments because the

wavelength of 5GHz is shorter and gives better resolution in

sensing movement. We use a Dell desktop (3.2GHz i5 CPU

and 8GB RAM) as the server.

���

Authorized licensed use limited to: Zhejiang University. Downloaded on October 17,2022 at 02:32:58 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Sensing node. Fig. 4: Motion detection.

Fig. 5: Indoor localization. Fig. 6: Gesture recognition.

It is common to use multiple sensing nodes in a complex

CSI-based sensing application. However, the lack of well-

established socket support makes it challenging to realize the

connection of multiple nodes. This is because Matlab’s own

socket library has two issues called randomly dropped packets

and UI thread blocking, which is due to Matlab’s single-thread

nature [22]. We implement the Java socket interface shown in

Figure 2 to support multi-threading. Specically, a new thread

will be automatically created via the interface when a new

sensing node tries to connect to the server. For each thread,

TinyCSI exports the transmitted CSI signals as a FIFO le and

then process the le with Matlab in real-time. TinyCSI will

also create a new GUI for visualizing the collected CSI data

on each thread (i.e., each node).

VI. DEMONSTRATIVE SYSTEMS

We have implemented three different types of CSI-based

sensing demos with TinyCSI. These demos are chosen to cover

the three major CSI-based sensing categories listed in Table I.

Figure 4, 5, and 6 show the three representative demo systems

deployed in the real world.

A. Demo System 1: Motion Detection

The rst demo implemented with TinyCSI is a motion

detection system, which continuously records the CSI mea-

surements and detects whether there is an object moving

nearby based on CSI variance. We chose this system to

illustrate the basic steps of using TinyCSI for the simplicity

of its signal processing procedure. It can also be easily

extended to many other existing projects which sense the

environments/objects based on the real-time processing of the

CSI measurements.

In the remote mode, the motion detection system is imple-

mented with two Matlab scripts, a main script motionDetec-

tionMain.m and a callback script motionDetectionCallback.m.

Figure 7 and Figure 8 show the implementation. As shown

in Figure 7, motionDetectionMain.m is executed for the

initialization of the system and CSI collection parameters,

such as setting the server listening port and CSI sample rate.

Some parameters necessary for the callback to process the CSI

measurements, e.g., the detection threshold, can be assigned to

a global variable GP. Values of the parameters in GP can later

be updated in the GUI for fast tuning. Then the collected CSI

data will be transmitted to the server via sockets and handled

1 % 1. Initialization Congurations
2 ServerPort = 8099;
3 SampleRate = 100;
4 Duration = 600;
5 StaticTime = [1, 10]; % Time for initialization
6 WindowLength = 10;
7

8 % 2. Global parameters to be tuned in the callback
9 global GP; % Parameters inside can be tuned with GUI
10 GP = struct () ;
11 GP.SampleRate = SampleRate;
12 GP.Duration = Duration;
13 GP.StaticTime = StaticTime ;
14 GP.WindowLength = WindowLength;
15 GP.thres = 3;
16

17 % 3. Create SensingServer for calling the callback function
18 sensingserver = SensingServer(ServerPort ,

@motionDetectionCallback);

Fig. 7: motionDetectionMain.m.

1 function DetectionResult =motionDetectionCallback(context , action ,
CSIdata)

2 global GP;
3 Amplitude = GetAmplitude(1, 1, 15, CSIdata) ;
4 PreprocessData = ButterworthFilter (Amplitude, 20, 5, 4,’low’);
5

6 % 1. Get CSI variance of static environments during initialization
7 if action == context .CALLBACK INIT
8 StaticVar = GetVar(PreprocessData) ;
9

10 % 2. Detect motion in real-time
11 elseif action == context .CALLBACK WINDOWDATA
12 Result = GetVar(PreprocessData) ;
13 if (Result / StaticVar > GP.thres)
14 fprintf (’Motion Detected!’);
15 else

16 StaticVar = Result ; % Update the static CSI variance
17 end

18 end

19 end

Fig. 8: motionDetectionCallback.m.

with the callback function motionDetectionCallback, which is

repetitively called by the SensingServer object.

In the callback function, the assigned action argument can

belong to 2 different types: CALLBACK INIT and CALL-

BACK WINDOWDATA. The CALLBACK INIT action is

taken to initialize necessary variables when the server is cre-

ated. In this demo, we initialize the value of static CSI variance

in different environments. The CALLBACK WINDOWDATA

action is taken to conduct the main processing algorithms of

the callback function. In this demo, nearby moving object can

be simply detected by comparing current CSI variance with

the CSI variance pre-collected in a static room. As shown

in Figure 8, we rst extract amplitude information from the

CSI data with GetAmplitude API. Next, a Butterworth lter,

i.e. ButterworthFilter, can be directly applied to the received

signals, and then the variance is calculated with a commonly

used API GetVar. A motion event is detected once the ratio

between current and static CSI variance StaticVar exceeds a

predened threshold GP.thres. While not detected, the static

CSI variance should be updated to resist the interference of

slight environmental changes.

We have implemented this demo in three scenarios: a

meeting room, a corridor, and a lab. A volunteer is required

���

Authorized licensed use limited to: Zhejiang University. Downloaded on October 17,2022 at 02:32:58 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Motion detection performance.

Scenario Meeting room Corridor Lab

Detection accuracy 93.3% 98.3% 94.7%

False alarm rate 3.7% 2.3% 2.0%

TABLE IV: Indoor localization performance.

Scenario Meeting room Corridor Lab

Localization error (m) 0.67±0.16 0.99±0.57 0.88±0.21

to walk through the LoS path in the corridor and walk along

an NLoS path 3m away from the wireless link in the meeting

room and lab for motion detection. It is worth noting that

GP.thres varies with different experimental environments and

can be rapidly tuned with the GUI support. Table III shows

the motion detection performance in the three scenarios. The

overall detection accuracy is 95.4% and the overall false

alarm rate is 2.7%. Among the three scenarios, the detection

performance is relatively higher in the corridor due to the

LoS path occupancy while the performance in the other two

scenarios is still acceptable.

In the efcient mode, the callback function will be automat-

ically separated into three TinyCSI APIs, i.e. GetAmplitude,

ButterworthFilter, and GetVar. After the optimization, the

three functions will be allocated to suitable places to minimize

the detection delay. The details of the allocation results will be

shown in Section VII. In the standalone mode, the simplicity

of this callback makes it easy to be automatically transferred

to the efcient C with the Matlab Coder API.

B. Demo System 2: Indoor Localization

The second demo is an indoor localization system with

multiple nodes. This system consists of one AP and two nodes,

which are placed at a height of 90cm. We use the classical

MUSIC algorithm [31] to extract the AoA of the wireless

path reected by the target in each node for localization. With

the two AoAs estimated from the two nodes, the target can

be localized at the intersection of the two angles. Sensing the

location via MUSIC AoA spectrum has been used to locate

rogue Wi-Fi AP [32], improve Wi-Fi security [33], and track

hand movement [34]. Our demo implemented with TinyCSI

can be viewed as a generalization of these localization systems.

Most of our current implementation of this demo follows a

similar pattern as in our previous demo. The largest difference

is to initialize multiple threads in the SensingServer object

for controlling multiple nodes to sense simultaneously. In this

demo, we have a server that connects two nodes which both

are responsible for sending the collected CSI measurements.

In the main script, we congure two nodes getting connected

and starting sensing simultaneously. There are also some minor

changes including passing the coordinates of nodes and AP to

the callback. In the callback function, we rst extract the CSI

data from each node. Then a SubcarrierExtension API will be

called to transform the stacked CSI data to an extended CSI

array, which increases the resolution of propagation paths [13].

Next, the callback utilizes a MUSIC API to calculate the AoA

of each node. Combing the two AoAs, TinyCSI can estimate

the location of the target. Table IV shows that this demo

system can achieve an average median localization error of

85cm in typical indoor environments.

N465D

>D7O465D

!"#$

!"#$

86PN

86P>D7O

IF:

Fig. 9: GUI of the gesture recognition demo.

In the efcient mode of this demo, the computing re-

sources include a server and two nodes. We use r ∈

{node 1, node 2, server} to represent these resources in the

optimization process. In addition, there are two sets of CSI-to-

AoA functions (including GetCSI, SubcarrierExtension, and

MUSIC) and a combination function GetMean to be allocated.

The detailed allocation results will be shown in Section VII.

C. Demo System 3: Gesture Recognition

The third demo we developed is a gesture recognition

system based on CSI signatures proposed in WiFinger [10].

Our demo can recognize four typical gestures that frequently

occur in daily life: push, applaud, wave hand and turn hand

over. This demo can be regarded as a generalization of existing

CSI ngerprinting systems.

Referring to [10], we mainly use a k-NN classier API

KNNClassier and a DTW distance calculation API DTWDist

in the callback function for gesture recognition. In particular,

we also integrated this demo into the GUI of TinyCSI.

With this GUI, similar ngerprinting systems can be realized

without even writing a single line of code. Figure 9 shows the

GUI of this demo system built upon TinyCSI. After connecting

the sensing node to the SensingServer, users can select the

Train item on the Training Control panel and click the New

button to create a new gesture tag for sensing. Then, users are

asked to click the Start button and make the corresponding

gesture for training data collection. After nishing the gesture,

users should click the Stop button to save the corresponding

CSI signature. The CSI signature of that gesture will be

simultaneously shown in the GUI with the streamed CSI.

Users can easily see whether they can obtain reliable and

distinguishable CSI signatures of that gesture. Users can also

adjust the essential parameter k of the k-NN classier in the

control panel. After training, users can select the Predict item,

and click the Start button for testing data collection. Once

the Stop button is clicked, the classication results will be

shown in the GUI. We evaluated this demo in the above three

scenarios. The AP and node are placed 1m apart and at a height

of 90cm. The volunteer is asked to perform the above four

gestures in the middle of the wireless link. In each scenario, we

have collected 800 samples for each gesture and each sample

lasts 10 seconds. We utilize 50% samples for training and the

���

Authorized licensed use limited to: Zhejiang University. Downloaded on October 17,2022 at 02:32:58 UTC from IEEE Xplore. Restrictions apply.

TABLE V: Gesture recognition accuracy in our demo.

Gesture Push Applaud Wave hand Turn hand over

Meeting room 92.04% 87.25% 89.62% 86.13%

Corridor 92.22% 91.07% 90.58% 89.16%

Lab 90.42% 82.87% 90.72% 82.22%

TABLE VI: The lines of code for implementing the three

representative demos with and without TinyCSI.

Demos
Motion
detection

Indoor
localization

Gesture
recognition

Original
implementation

Java 317
C 173
Matlab 132

Java 341
C 173
Matlab 198

Java 317
C 173
Matlab 261

With TinyCSI Matlab 33 Matlab 55 Matlab 39

Reduction 94.7% 92.3% 94.8%

left 50% for testing. Table V shows the gesture recognition

accuracy. Results show this demo is able to identify the above

four gestures with an average accuracy of 88.7%, which is

comparable with the experimental results in [10].

VII. EVALUATION

In this section, we present the evaluation of TinyCSI. We

evaluate the three demos in terms of ease of programming,

improvement of sensing delay and implementation overhead.

A. Ease of Programming

Table VI shows the lines of code needed to implement

the three representative demos between using TinyCSI and

using the original APIs provided by Matlab. The Java code

is implemented for the sever to send collection settings

and control commands to the sensing node. For the indoor

localization demo, we need to manually congure multiple

connections to different nodes. The C code is implemented

for transmitting the CSI data to the server in real-time and

is the same across three demos. Results show that using

TinyCSI reduces the lines of code by 93.9% on average.

This is due to the appropriate API abstraction and the hidden

development/connection details in TinyCSI.

B. Reduction of Sensing Delay

To evaluate the responsiveness of the efcient mode, we

have measured the sensing delays of three working modes

for the three representative demos. Sensing delay is dened

as the time that putting a complete segment of CSI signals

into the callback function to the time that getting the returned

sensing results. In the remote and standalone mode, the sensing

delay is the time consumption for executing the callback

function, excluding the time for visualization. This is exactly

the sensing delay of most existing CSI-based systems. We

simply attach a pair of timestamps at the beginning and end of

the callback function. In the efcient mode, the sensing delay

includes the time for resource allocation, the time for resource

transmission, and the time for all APIs to be completed.

To analyze the average sensing delay, we have collected

120s CSI data at a frequency of 100Hz for each demo. Data is

transmitted through Wi-Fi and the median network throughput

measured is around 1Mbps. We repeat the experiment 10

times. Table VII shows the sensing delays of three working

modes in the three representative demos. Results show that: (1)

TABLE VII: Sensing delays of the three working modes in

the three representative demos (processing 120s CSI data).

Demos Standalone Remote Efcient

Motion detection 12.63±0.69s 8.60±0.75s 7.03±0.68s

Indoor localization 17.85±0.73s 13.26±0.71s 12.04±0.78s

Gesture recognition 21.58±1.57s 16.62±0.83s 13.94±0.78s

TABLE VIII: Extra execution time and memory cost of the

TinyCSI solver in the three representative demos.

Demos
Motion
detection

Indoor
localization

Gesture
recognition

Time (s) 1.34±0.36 2.70±0.40 2.42±0.38

Memory (MB) 11.32±1.07 14.58±0.58 14.61±0.82

For the motion detection demo, its GetAmplitude function is

allocated to the node while ButterworthFilter and GetVar will

run on the server. The efcient mode reduces the sensing delay

by 44% and 18% relative to the standalone mode and remote

mode, respectively. (2) For the indoor localization demo,

the two GetCSI APIs and two SubcarrierExtension APIs are

respectively allocated to the two nodes and the remaining three

APIs are allocated to the server. The efcient mode reduces the

sensing delay by 33% and 9% relative to the standalone mode

and remote mode, respectively. (3) For the gesture recognition

demo, the rst two APIs (i.e. GetAmplitude, ButterworthFilter)

are allocated to the node while the other ve APIs are allocated

to the server. The efcient mode reduces the sensing delay by

35% and 16% relative to the standalone mode and remote

mode, respectively. The low sensing delays of the efcient

mode indicate that this mode can signicantly improve the

system responsiveness with the TinyCSI solver. Results also

show that simple signal processing at the start of the callback

function is more suitable to be executed on the nodes.

C. Implementation Overhead

Execution Time Overhead. While the efcient mode

signicantly improves the system responsiveness, its optimiza-

tion process can also introduce non-negligible execution time

overhead. Table VIII shows the execution time of the TinyCSI

solver in our demos. Results show that the execution time

of the solver is largely determined by the number of APIs

to be managed and the number of computing resources. A

larger number of APIs and computing resources will consume

a longer optimization time. However, these few seconds of

optimization time are acceptable since the TinyCSI solver

executes the optimization process only once when the system

starts running or the network condition changes signicantly.

Memory Overhead. Running the SensingServer object

introduces extra memory cost to the server. We evaluate the

average memory cost of each component in SensingServer.m

when running the three representative demos in the remote

mode. We need approximately 5.4MB of memory to run the

ControlServer.jar. The memory overhead for the GUI.m is

within 13MB. For FIFO les, the overheads of writing and

reading at a rate of 100Hz are 3.8MB and 4.3MB, respectively.

Moreover, as shown in Table VIII, the average memory costs

of the optimization process in the three demos are 11.32MB,

14.58MB and 14.61MB, respectively. As a result, the memory

overhead of TinyCSI is negligible for a common server.

���

Authorized licensed use limited to: Zhejiang University. Downloaded on October 17,2022 at 02:32:58 UTC from IEEE Xplore. Restrictions apply.

TABLE IX: Average sensing delays of the three

representative systems developed by users.

Systems Original (remote mode) Efcient mode

Keystroke recognition 0.116s 0.096s

Target tracking 0.171s 0.156s

Activity classication 0.153s 0.128s

D. User Study

To evaluate the applicability of TinyCSI, we conducted

user studies and chose three representative users (including

experienced and novice developers) for analysis. These users

develop a keystroke recognition system, a target tracking

system, and an activity classication system using TinyCSI,

respectively. At the end of their development processes, we

also did a survey to evaluate their user experience of TinyCSI.

The biggest benet reported by the three users is the remote

mode. With the well-abstracted API library and GUI, they

can intuitively understand how the CSI signals/features change

when they deploy their systems with different algorithms/pa-

rameters at different places. In addition, the efcient mode

does benet their sensing systems. Table IX shows that our

efcient mode can effectively reduce the sensing delay by

8.8%-17.2% for their systems.

VIII. CONCLUSION

In this paper we present TinyCSI, a rapid development

framework for CSI-based sensing applications. Developers

only need to write a main script to determine the CSI collection

settings and a callback function with our predened Matlab/C-

based library to realize the essential sensing algorithms.

TinyCSI provides a remote mode for developers to rapidly

validate algorithms and related parameters, an efcient mode

for achieving a high system sensing responsiveness, and a

standalone mode for running systems without network access.

We implemented TinyCSI and evaluated its performance using

three representative demos and real-world user studies. Results

show that TinyCSI helps signicantly reduce the development

efforts and sensing delay, while incurring acceptable overhead.

Acknowledgment: This work is supported by the

National Key R&D Program of China under Grant No.

2019YFB1600700 and the National Science Foundation of

China (No. 61872437). Wei Dong is the corresponding author.

REFERENCES

[1] D. Halperin, W. Hu, A. Sheth, and D. Wetherall, “Tool release: Gathering
802.11n traces with channel state information,” ACM SIGCOMM CCR,
vol. 41, no. 1, p. 53, Jan. 2011.

[2] Y. Xie, Z. Li, and M. Li, “Precise power delay proling with commodity
wi,” in Proceedings of ACM MobiCom, 2015.

[3] Z. Zhou, Z. Yang, C. Wu, L. Shangguan, and Y. Liu, “Towards
omnidirectional passive human detection,” in Proc. of IEEE INFOCOM,
2013, pp. 3057–3065.

[4] J. Lv, W. Yang, L. Gong, D. Man, and X. Du, “Robust wlan-based
indoor ne-grained intrusion detection,” in Proc. of IEEE GLOBECOM,
2016, pp. 1–6.

[5] C. Wu, Z. Yang, Z. Zhou, X. Liu, Y. Liu, and J. Cao, “Non-invasive
detection of moving and stationary human with wi,” IEEE JSAC,
vol. 33, no. 11, pp. 2329–2342, 2015.

[6] K. Qian, C. Wu, Z. Yang, Y. Liu, and Z. Zhou, “Pads: Passive detection
of moving targets with dynamic speed using phy layer information,” in
Proc. of IEEE ICPADS, 2014, pp. 1–8.

[7] J. Xiao, K. Wu, Y. Yi, L. Wang, and L. M. Ni, “Fimd: Fine-grained
device-free motion detection,” in Proc. of IEEE ICPADS, 2012.

[8] W. Wang, A. X. Liu, M. Shahzad, K. Ling, and S. Lu, “Understanding
and modeling of wi signal based human activity recognition,” in Proc.

of ACM MobiCom, 2015, pp. 65–76.
[9] B. Fang, N. D. Lane, M. Zhang, A. Boran, and F. Kawsar, “Bodyscan:

Enabling radio-based sensing on wearable devices for contactless
activity and vital sign monitoring,” in Proc. of ACM MobiSys, 2016.

[10] H. Li, W. Yang, J. Wang, Y. Xu, and L. Huang, “Winger: talk to your
smart devices with nger-grained gesture,” in Proc. of ACM UbiComp,
2016, pp. 250–261.

[11] Y. Ma, G. Zhou, S. Wang, H. Zhao, and W. Jung, “Sign: Sign language
recognition using wi,” Proc. of ACM IMWUT, vol. 2, no. 1, p. 23, 2018.

[12] X. Li, S. Li, D. Zhang, J. Xiong, Y. Wang, and H. Mei, “Dynamic-music:
accurate device-free indoor localization,” in Proc. of ACM UbiComp,
2016, pp. 196–207.

[13] M. Kotaru, K. Joshi, D. Bharadia, and S. Katti, “Spot: Decimeter level
localization using wi,” in ACM SIGCOMM CCR, vol. 45, no. 4, 2015.

[14] K. Wu, J. Xiao, Y. Yi, M. Gao, and L. M. Ni, “Fila: Fine-grained indoor
localization,” in Proc. of IEEE INFOCOM, 2012, pp. 2210–2218.

[15] J. Xiao, K. Wu, Y. Yi, L. Wang, and L. M. Ni, “Pilot: Passive device-free
indoor localization using channel state information,” in Proc. of IEEE

ICDCS, 2013, pp. 236–245.
[16] J. Wang, H. Jiang, J. Xiong, K. Jamieson, X. Chen, D. Fang, and

B. Xie, “Lifs: low human-effort, device-free localization with ne-
grained subcarrier information,” in Proc. of ACM MobiCom, 2016.

[17] A. Virmani and M. Shahzad, “Position and orientation agnostic gesture
recognition using wi,” in Proc. of ACM MobiSys, 2017, pp. 252–264.

[18] IEEE 802.11n-2009-Amendment 5: Enhancements for Higher Through-

put. IEEE-SA, 2009.
[19] G. Guan, W. Dong, Y. Gao, K. Fu, and Z. Cheng, “Tinylink: A holistic

system for rapid development of iot applications,” in Proc. of ACM

MobiCom, 2017, pp. 383–395.
[20] L. Ravindranath, A. Thiagarajan, H. Balakrishnan, and S. Madden,

“Code in the air: simplifying sensing and coordination tasks on
smartphones,” in Proc. of the Twelfth Workshop on Mobile Computing

Systems & Applications. ACM, 2012, p. 4.
[21] S. Elmalaki, L. Wanner, and M. Srivastava, “Caredroid: Adaptation

framework for android context-aware applications,” in Proc. of ACM

MobiCom, 2015, pp. 386–399.
[22] Y.-C. Tung, D. Bui, and K. G. Shin, “Cross-platform support for rapid

development of mobile acoustic sensing applications,” in Proc. of ACM

MobiSys, 2018, pp. 455–467.
[23] MEX, “Build MEX function from C/C++ or Fortran source code,” https:

//ww2.mathworks.cn/help/matlab/ref/mex.html.
[24] M. Shahzad and S. Zhang, “Augmenting user identication with wi

based gesture recognition,” Proc. of ACM IMWUT, vol. 2, no. 3, p. 134,
2018.

[25] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology,
vol. 2, pp. 27:1–27:27, 2011.

[26] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer with
code ofoad,” in Proc. of ACM MobiSys, 2010, pp. 49–62.

[27] P. Georgiev, N. D. Lane, K. K. Rachuri, and C. Mascolo, “Leo:
Scheduling sensor inference algorithms across heterogeneous mobile
processors and network resources,” in Proc. of ACM MobiCom, 2016.

[28] M. Berkelaar, K. Eikland, and P. Notebaert, “lp solve 5.5, open source
(mixed-integer) linear programming system. software, may 1 2004.”

[29] “Matlab coder app,” https://www.mathworks.com/products/
matlab-coder/apps.

[30] SolidRun, “HummingBoard Pro,” http://wiki.solid-run.com/doku.php?
id=products:imx6:hummingboard, 2014.

[31] R. Schmidt, “Multiple emitter location and signal parameter estimation,”
IEEE T ANTENN PROPAG, vol. 34, no. 3, pp. 276–280, 1986.

[32] A. Tzur, O. Amrani, and A. Wool, “Direction nding of rogue wi-
 access points using an off-the-shelf mimo–ofdm receiver,” Physical

Communication, vol. 17, pp. 149–164, 2015.
[33] J. Xiong and K. Jamieson, “Securearray: Improving wi security with

ne-grained physical-layer information,” in Proc. of ACM MobiCom,
2013, pp. 441–452.

[34] J. Zhu, Y. Im, S. Mishra, and S. Ha, “Calibrating time-variant, device-
specic phase noise for cots wi devices,” in Proc. of ACM SenSys,
2017, p. 15.

���

Authorized licensed use limited to: Zhejiang University. Downloaded on October 17,2022 at 02:32:58 UTC from IEEE Xplore. Restrictions apply.

