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ABSTRACT
Recent years have witnessed the progressive integration between
IoT (Internet of Things) devices and the cloud server, which pro-
motes the efficiency and interoperability of IoT applications. We-
bAssembly, known for its performance and portability, is considered
a promising technology to bridge the heterogeneity between de-
vices and the server. Nevertheless, resource-constrained devices,
which are commonly deployed in the wild, have difficulty partici-
pating in this device-cloud integration because they can hardly run
WebAssembly efficiently.

Hence, we propose WAIT, a lightweight WebAssembly runtime
on resource-constrained IoT devices for device-cloud integrated
applications. WAIT is the first work to enable the Ahead-of-Time
(AOT) compilation of WebAssembly on resource-constrained de-
vices by leveraging several approaches to reduce memory usage.
Moreover, WAIT introduces various safety checks at compile-time
to guarantee the sandbox execution of WebAssembly and opti-
mizes energy consumption for IoT devices. Results show that WAIT
achieves 84.8× lower RAM usage compared with the state-of-the-
art WebAssembly AOT runtime, and reduces energy consumption
by 1.2×~4.9× while guaranteeing the sandboxed execution of We-
bAssembly modules.

CCS CONCEPTS
• Computer systems organization → Embedded and cyber-
physical systems; • Networks→ Cloud computing; Network com-
ponents; • Information systems→ Computing platforms.
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1 INTRODUCTION
Nowadays, the Internet of Things (IoT) technology penetrates vari-
ous scenarios of our daily lives and work, such as city-scale sens-
ing [1, 16], wild monitoring [4, 37], and smart healthcare [45, 53].
The prevalent cloud computing further extends the ability of IoT
applications. The cloud server aggregates the sensing data from
multiple sources to generate knowledge and facilitates the conve-
nient interaction between IoT devices and human beings, which
finally leads to the device-cloud integration.

Recent advances of computation offloading [32, 33] tighten the
integration by supporting not only data exchange, but also the
portability and interoperability of computing tasks between the
device and the cloud. To smoothen the offloading process, a con-
sistent execution environment that empowers seamless migration
of the code between heterogeneous instruction set architectures
(ISAs) is necessary. Researchers address this issue via virtual ma-
chines (VMs) [44, 48] and common language runtimes (CLRs) such
as C# [11], Java [29] and JavaScript [36].

Nevertheless, many IoT devices only have constrained comput-
ing resources because they are generally deployed in the wild and
expected to last for months or longer with battery power or even
energy-harvesting. For example, the Atmel ATmega128 microcon-
troller (MCU), commonly used in industrial automation and wild
sensing, is only equipped with 4KB RAM and 128KB Flash while
achieving 16.43mW average active power. Existing efforts towards
the consistent execution on heterogeneous platforms either require
OS-level support (e.g., Hypervisor for VMs) or incur much over-
head (e.g., over 100× for JavaScript engine), which require massive
computing resources. WebAssembly [21] seems to be a promis-
ing technology to achieve seamless device-cloud integration on
resource-constrained devices by its portability and efficiency. We-
bAssembly is a bytecode format designed to run on a wide range of
platforms. It also serves as a common compilation target of various
high-level languages (e.g., Rust, C++) and exhibits better runtime
performance than other CLRs [33].

However, supporting device-cloud integration with WebAssem-
bly on resource-constrained devices still faces non-trivial chal-
lenges.

Challenge 1: how can we support the device-cloud integrated
application and execute it efficiently on resource-constrained de-
vices? Executing WebAssembly needs a dedicated runtime to trans-
late bytecode into native instruction. Some attempts are targeting
low-end devices by building an interpreter of WebAssembly, such
as wasm3 [50], but they run more than ten times slower than the
native code. Ahead-of-time (AOT) translation could accelerate the
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execution by translating the bytecode to native at load time. Never-
theless, almost all AOT approaches of WebAssembly found in the
literature are not feasible due to the constrained resources.

Challenge 2: how can we guarantee the sandboxed execution
of WebAssembly? The device-cloud integrated computing scheme
makes the IoT devices more vulnerable to network-based attacks
than standalone applications. Furthermore, the low-power, low-cost
IoT devices generally do not have memory management unit or
CPU privileged levels, which makes sandboxed execution harder.

Challenge 3: how can we optimize the energy consumption of
the on-device execution? Peripheral accessing, duty-cycling, and
Flash accessing are unique features of IoT applications compared
with traditional desktop applications. However, the core specifi-
cation of WebAssembly does not include support for the above
features so far.

Therefore, we present WAIT, a lightweight WebAssembly run-
time on resource-constrained IoT devices for device-cloud inte-
grated applications. With WAIT, users could write device-cloud
integrated applications in various high-level languages and compile
them to WebAssembly modules. Then the application logic to be
executed on the IoT device is disseminated via wired or wireless.
Upon receiving the module, WAIT performs on-device AOT com-
pilation, checks the sandbox guarantees, and executes the module.
To be more specific, WAIT proposes the corresponding solutions
to the three challenges.

Solution 1:WAIT advocates a loading agent to regularly com-
municate with the cloud server and load the WebAssembly module
if available. A lightweight AOT compiler and a series of memory op-
timizations lie inside the agent to correctly and efficiently execute
WebAssembly on resource-constrained devices. To cope with the
limited resources, WAIT reduces the compile-time memory foot-
print by streamed look-back compilation, and optimizes the run-time
memory layout by post-compile memory trimming and constants
remapping to support complex applications.

Solution 2: In order to provide a safe and deterministic inte-
grated execution environment on the resource-constrained devices,
WAIT introduces memory safety and control-flow integrity checks.
To minimize the overhead during execution, WAIT moves most of
the checks to the AOT compilation stage and carefully selects the
instructions being checked.

Solution 3: For developers, WAIT provides IoT-related APIs for
peripheral-accessing and duty-cycling to facilitate complete IoT pro-
gramming. Moreover, WAIT adopts the bulk instruction writing and
the I/O direct accessing approach to reduce the energy consumption
of both compile- and run-time.

We implement WAIT and evaluate its performance extensively.
Results show that: (1) The state-of-the-art WebAssembly inter-
preter [50] and AOT runtime [9] consume 13.6× and 84.8× more
RAM than WAIT, respectively. (2) The energy optimization ap-
proaches of WAIT achieve 1.2×~4.9× power reduction. (3) WAIT
only incurs 19.1% average run-time overhead for ensuring the
sandboxed execution of WebAssembly. WAIT is open-source on
https://github.com/liborui/WAIT.

The rest of this paper is organized as follows. Section 2 intro-
duces the background and motivation of WAIT. Section 3 presents
its overview. Section 4 and Section 5 describe the design and imple-
mentation details. Section 6 evaluates the performance extensively.
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Figure 1: Flash and RAM layout of constrained IoT devices.

Section 7 discusses some important issues and Section 8 presents
the related work. Finally, Section 9 concludes the paper.

2 BACKGROUND
Preliminaries of WebAssembly. WebAssembly owns a series of
properties that contribute to efficiency and safety. Among these
properties, linear memory and control instructions play essential
roles in our design.

Linear memory. To achieve the isolated execution of aWebAssem-
bly module by design, WebAssembly organizes its main storage in
a linear memory region. The linear memory is a mutable continu-
ous array of bytes containing global/local variables and constants.
At runtime, a WebAssembly module can only access its own lin-
ear memory. The linear memory is separated from the code space
and the stack which prevents various dangerous behavior such as
arbitrary jumps.

Control instructions. The control-flow instructions of WebAssem-
bly are classified by the function-type (i.e., FUNC, CALL, RETURN and
CALL_INDIRECT) and the block-type (i.e., BLOCK, LOOP, IF, ELSE,
END, BR, BR_IF and BR_TABLE). Note thatWebAssembly discards the
direct jump instruction because it is considered harmful [13]. Both
types can consume input and produce output, and the signature of
each function/block is explicitly recorded in theWebAssembly mod-
ule. The block-type can be nested, but the function-type can not.
Another distinct design of the control instruction of WebAssembly
is its BR and BR_IF operation. These instructions denote jumping
outwards to the upper level of the nested block and their operand
means the depth to jump outward.

System architecture of resource-constrained IoT devices.
Generally, resource-constrained IoT devices adopt the Harvard
architecture for their simple circuit design. As shown in Figure 1,
the storage on resource-constrained devices is organized in two
parts, the RAM and the Flash, The data saved in the Flash is readable,
writable and executable, hence the binary instructions (i.e., the
.text segment) reside in the Flash. The data used or generated
at run-time is stored in the RAM. The static and global variables
are saved in.data, uninitialized data is saved in .bss, and the
dynamically allocated data (e.g., using malloc) is saved in the heap.
However, the RAM data is not executable even if it is assembly
code. The RAM is commonly much smaller than the Flash for cost
reasons, which motivates us to pay more attention to the efficient
usage of the RAM in the design of WAIT.

Interpreted, JIT, and AOT bytecode execution. There are
mainly three approaches to run the cross-platform bytecode (such
as WebAssembly) on a certain platform: interpreter, Just-in-Time
(JIT) and Ahead-of-Time (AOT) compilation based execution. The
interpreter repeatedly reads one instruction of the bytecode and
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Table 1: Comparison of the WebAssembly runtime

Linux-compatible devices IoT devices
Runtime Stars

Interp. JIT AOT Interp. AOT
Wasmer [51] 10.1k ✘ ✓ ✓ ✘ ✘

Wasmtime [8] 5.6k ✘ ✓ ✘ ✘ ✘

Lucet [7] 3.9k ✘ ✘ ✓ ✘ ✘

Wasm3 [50] 3.9k ✓ ✘ ✘ ✓ ✘

WAMR [9] 2.2k ✓ ✓ ✓ ✓ ✘

WAC [28] 378 ✓ ✘ ✘ ✓ ✘

translates it to machine code which is easy to implement and re-
quires few resources. JIT compilation means to compile the code
while running, and AOT means to compile the code before running
it. The interpreted execution is generally slower than those who
use JIT or AOT because the runtime based on JIT or AOT could
perform various optimizations to the binary but the interpreter can
hardly do so.

We survey the existing WebAssembly runtimes that are publicly
available and their underlying translation technologies in Table 1.
Note that JIT compilation is impractical on IoT devices because they
can not execute code fromRAM.We can see from the table that none
of the existing runtimes support AOT compilation on constrained
devices. The AOT compilation-based runtimes on Linux-compatible
devices can scarcely be ported to the IoT devices due to the usage
of a heavy-weight code generation framework (e.g., LLVM). WAIT
bridges the gap between efficient AOT compilation ofWebAssembly
and IoT devices.

3 SYSTEM OVERVIEW OFWAIT
In this section, we present the design considerations and introduce
the building blocks of WAIT.

3.1 Design goals
During the design of WAIT system, we take the characteristic of
the IoT device (limited memory and energy) and safety concerns
brought by the device-cloud integration into consideration. Thus,
the design and implementation of WAIT must satisfy the following
goals:

• Memory efficiency. The first and foremost goal of WAIT
is to get WebAssembly executed. Compared with the GB-
level RAM on Linux-compatible devices, the memory on the
IoT device shrinks to KB-level, which makes most of the
existing approaches for executing WebAssembly unavailable.
Hence, WAIT must minimize the memory footprint both at
compile-time and run-time.

• Execution safety. Execution safety is paramount for the
device-cloud integrated computing scheme. This is because
the integration brings a broader attack surface in addition
to a performance improvement due to execution of code
transmitted over a network.

• Energy efficiency. The IoT device is generally powered by
batteries, especially those which are deployed in the wild. A
subtle increase in energy consumption could result in days of
lifetime difference. Therefore, we recognize energy efficiency
as one of the design goals.

WAIT System

Device-Cloud
Integration Agent

Ahead-of-Time
WASM Compiler

Binary-level
Energy Optimizer

Compile-time
Safety Analyzer

WASM
Module

Cloud server

C/C++
Application

Rust
Application

Go
Application

Other
Languages

Resource-constrained device

Run-time
Safety Analyzer

Native
Executables

MCU PeripheralsFlash RAM

WAIT
API Library

Figure 2: Overview of WAIT system.

3.2 System workflow of WAIT
Figure 2 illustrates the overall workflow of WAIT. Developers could
write a device-cloud integrated application in various languages
such as C, C++ and Rust. WAIT provides an API library includ-
ing IoT-related APIs for developers to manipulate peripherals or
fall into low-power mode. Then, the application is compiled to a
WebAssembly module that could run on both the cloud server or
the resource-constrained IoT device facilitated by WAIT. On the
IoT device, an Ahead-of-Time compiler (Section 4.1) transforms the
WebAssembly bytecode into native assembly. Then, the module
is checked for safey and optimized for energy by a compile-time
safety analyzer (Section 4.2) and a binary-level energy optimizer (Sec-
tion 4.3), respectively. Finally, the module runs on the constrained
IoT device and a small fraction of the checks are left to the run-time
analyzer (Section 4.2). With respect to the coordination between
IoT devices and the cloud, a device-cloud integration agent residing
on IoT device is responsible for receiving the WebAssembly module
via network and saving it to Flash (Section 4.4).

4 WAIT DESIGN
In this section, we first present the lightweight methods we employ
in our AOT compiler to reduce the memory usage of both the
compile and execution stages. Then we describe the safety checks
and energy optimizations of WAIT.

4.1 Lightweight WebAssembly runtime
As we stated in Section 3.1, reducing the memory footprint of WAIT
as much as possible is the key to realizing efficient WebAssembly
execution on resource-constrained devices. Therefore, we present
our approaches to makingWAIT lightweight below.We propose the
streamed look-back compilation, post-compile memory trimming
and constant values remapping to reduce the RAM usage during the
AOT compilation, after the compilation and during the run-time.

Streamed look-back compilation. Existing AOT runtimes of
WebAssembly [9, 51] exploit complicated code generation frame-
works such as LLVM or Cranelift [6] to translate the bytecode
to native instructions. These frameworks lead to an unacceptable
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Figure 3: The stack state before and after the BR instruction.
BR𝑚means jumping out𝑚 levels of blocks. Here𝑚 = 1means
the first outer block, i.e., the block from line 1 to 11.

RAM footprint and can hardly port to restricted devices. Hence, we
build our own AOT compiler by replacing each bytecode with a
succession of native instructions.

Unfortunately, directly loading the whole WebAssembly module
into RAM to perform AOT compilation fails sometimes because
loading the module occupies most of the available RAM. Inspired by
stream processing approaches [34], WAIT adopts a streamed compi-
lation to read and translate the bytecode instruction-by-instruction.

However, this streamed compilation of WebAssembly also faces
non-trivial problems. As we mentioned in the background, We-
bAssembly is designed as a stack machine. It abandons simple jump
instructions, and instead provides completely structured control-
flow instructions (e.g., BLOCK and LOOP). The implications of these
WebAssembly characteristics on WAIT are two-fold.

First, WAIT needs to convert structured control-flow instruc-
tions to jump-based ones because resource-constrained devices
commonly only support direct jump. Nevertheless, the jump instruc-
tions require an exact address to redirect to, whereas the address
may not be available under the streamed compilation approach. The
reason is that the jump destination may not yet be compiled when
the streamed compilation translates a control-flow instruction. To-
wards this problem, WAIT upgrades the streamed compilation with
a look-back. The look-back means WAIT labels the undetermined
branch targets with a pseudo-address during the streamed compila-
tion and substitutes them when the compilation of all the bytecode
is finished. For example, WAIT labels each BLOCK and LOOP using
a universal index throughout the WebAssembly module and tem-
porarily substitutes the target of each branch instruction with the
index according to the branch depth. After the complete pass of the
streamed compilation, WAIT then fills the physical address instead
of the temporary index.

Second, the stack state is critical to the execution correctness of
WebAssembly, but the native jump instructions on the IoT device
will not keep an eye on the stack. For example, as shown in the code
snippet in Figure 3, the shaded stack frame should be discarded
after executing the BR (line 7), while the native jmp assembly does
nothing with the stack. Hence, WAIT leverages lightweight stack
restoring to take care of the stack before and after the block-type
instructions (e.g., BR). During the first pass of the steamed com-
pilation, WAIT records the stack depth of each BLOCK and LOOP
entrances. Then during the look-back compilation stage, WAIT
restores the stack to the proper depth (i.e., the entrance depth plus
the return size of the target block/loop). We further minimize the
restoration costs (i.e., CPU cycles) by selectively emitting different
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Figure 4: The memory layout of WAIT during compilation
and execution.

instructions under different stack states. Taking the ATMega128
MCU as an example, WAIT emits pop when discarding only one
value (4 cycles per pop) and modifies the SP register directly for
correct stack depth when discarding multiple values (5 cycles).

Post-compile memory trimming.WebAssembly uses linear
memory to store the run-time data, as we described in the back-
ground. Intuitively, we could allocate a buffer in the heap as the
linear memory of WebAssembly. However, this naive approach
suffers from frequent linear memory shortage because the heap
only takes up a small portion of the RAM. Fortunately, we find that
the majority of data in the .data and .bss sections is no longer
needed after AOT compilation, e.g., the data structure recording
the block depth. We can trim off the unnecessary data before we
execute the WebAssembly module to reserve more space for the
linear memory–but how? There is still some essential data that is
intertwined with these useless data.

To address this challenge, WAIT needs to answer two questions:
(1) How can we differentiate between useful and useless data? (2)
how can we change the memory layout at run-time to use the
spare space considering the layout is generally ascertained at the
linking phase of compilation. For the first question, WAIT leverages
a new section named .wait as shown in Figure 4. WAIT’s data
structures, which are helpful after AOT compilation, are assigned to
the .wait section using attribute specifiers. For the second question,
we found that the parameters of the heap (e.g., start address and
size) are stored in several global variables of malloc(). Hence, we
instrument the malloc() for those variables, assign them to the
.wait section, and assign the new parameters of the heap after the
.data and .bss are trimmed off.

Constants remapping. Constant data is commonly used in
IoT applications to save fixed calculating parameters (e.g., for FFT
and sinewave) [43]. Most of these data never change throughout
the execution of the application but occupies a large amount of
precious RAM. Hence, our basic idea is to reduce the RAM usage
by moving constants, which originally located in the RAM, to the
relatively abundant Flash space. This design leads to a question
that the constants are logically located in the linear memory but
physically distributed in RAM and Flash. Therefore,WAIT leverages
a linear memory (LM) jump table, which is located in the .wait
section, that maps the logical and physical address, as shown in the
Flash illustration of Figure 4. Each time the WebAssembly module
intends to access linear memory, WAIT takes over the accessing
and refers to the LM jump table for exact address. Undoubtedly, this
approach will introduce run-time overhead because accessing the
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Table 2: Sandbox checks of WAIT
Number Description
Compile-time checks. (CC for control-flow integrity checks, CM for memory safety checks.)
CC-1 The number of elements in the top of the value stack ≥ the number of the operand of the next instruction will consume.
CC-2 The type of the elements should be the same to the operand type of next instruction.
CC-3 Each FUNC must be terminated with RETURN; LOOP/BLOCK must be terminated with END; IF must be terminated with END or ELSE.
CC-4 For each function, its type index ≤ maximum number of signatures listed in the type section.
CC-5 Individually examine the stack for each function/loop to prevent the outer stack from being modified by the instruction of a inner layer.
CC-6 The stack depth of the entrance of a function/block + the size of the return value = the stack depth of the exit of a function/block.
CC-7 The function index of the start component ≤ maximum function index.
CC-8 The branch index of a BR/BR_IF ≤ the block depth of current instruction.
CM-1 A linear memory region is compulsory for a valid WebAssembly module.
CM-2 The size of the data segment < minimum declared length of the linear memory.
CM-3 The access index of variable instructions <= the total number of the local/global variables.
CM-4 The SET_LOCAL and SET_GLOBAL instruction could not manipulate the immutable variables.
CM-5 The imported variable could not be modified by SET_LOCAL and SET_GLOBAL.

Execution-time checks. (EC for control-flow integrity checks, EM for memory safety checks.)
EC-1 Current stack depth + number of additional stack use by next instruction ≤ maximum stack depth
EC-2 The signature of the callee function must be identical to the signature specified in the CALL_INDIRECT.
EC-3 The index of the callee function ≤ the length of the TABLE in the CALL_INDIRECT.
EM-1 The memory addressing index ≤ size of existing linear memory.

Flash is slower than directly load data from RAM. We will evaluate
this overhead in Section 6.5.

4.2 Two-phase sandbox checks
WAIT performs sandbox checks at both the compile phase and
execution phase.

The high-level goals of WAIT’s sandbox checks are to guarantee
control-flow integrity (CFI) andmemory safety during the execution
of the WebAssembly module. Specifically, WAIT protects the CFI
by restricting execution to either the compiled assembly of the
bytecode following the behavior defined by theWebAssembly or the
code offered by WAIT, and ensures memory safety by prohibiting
illegal read and write for both the linear memory and the stack.
We list the complete list of checks that WAIT performs in Table 2,
classified by the stage the constraints are checked.

Protecting control-flow integrity.We show the completeness
of our protection of CFI by grouping the checks to the correspond-
ing WebAssembly instructions. The CFI could be affected by both
the control-flow instructions and the other simple instructions.

Simple instructions.We start with simple instructions.WebAssem-
bly is a stack-based virtual machine. Hence most of the instructions
interact with the stack. Therefore, we check the quantity (CC-1)
and type (CC-2) of the operands that reside on the top of the stack
to guarantee the valid execution of each simple instruction. More-
over, WAIT also checks for potential stack overflow by evaluating
whether the top of the stack will exceed the maximum stack depth
after executing the next instruction (EC-1). Intuitively, each instruc-
tion that interacts with the stack should go through EC-1. However,
we found that only a small portion of the bytecodes grow the stack.
These are the instructions that push variable onto the stack and
perform function calls. Hence, to reduce the run-time overhead, we
optimize EC-1 by only checking these instructions that will grow
the stack. We will discuss the performance of this optimization in
Section 6.3.

Common checks for both function- and block-type instructions.
The following checks are shared by both types. We start with san-
ity checks that ensure each building block of the control flow is

correctly organized. For example, the fundamental control flow con-
straint would be broken if there are unclosed functions or blocks
(CC-3). Moreover, the other sanity check enforces an explicit and
valid function signature (CC-4), which also provides necessary sig-
nature information for the following checks. Considering the stack
state of control instructions, WAIT ensures the callee function (or
inner block) could not affect the stack of caller function (or outer
block) (CC-5). With the aid of the signature information, we also
check the correctness of the stack state before and after executing
a function/block (CC-6).

Function-type instructions. To start the execution, a WebAssem-
bly module must have a start component and the start function
index defined in the module must be valid (CC-7). WebAssembly
supports CALL_INDIRECT to invoke the function provided by the
WAIT runtime. Hence, we should check whether the index (EC-2)
and the signature (EC-3) of the indirect call are valid.

Block-type instructions. Different from functions, blocks in We-
bAssembly could be nested with each other and jumped out via BR.
Thus, WAIT checks the validity of each branch instruction like BR
and BR_IF (CC-8).

Ensuring memory safety. Figure 4 illustrates the memory
layout of WAIT. The WebAssembly module is allowed to access
only the linear memory region (including the Flash region that
stores the constants). Any reads and writes to other regions is
illegal because the access could compromise the whole device. We
categorize the instructions that could access memory as the variable
instructions and memory instructions.

Basic sanity check. Two sanity checks are performed to ensure
basic memory safety. First, the module is required to contain a
default linear memory (CM-1). Second, the size of the data segment
of WebAssembly can not exceed the minimum length of the linear
memory (CM-2).

Memory instructions. The memory instructions (e.g., I32.LOAD
and F64.STORE) directly manipulate the linear memory, which is
the key protected area of WAIT. The exact address to be accessed
can not be obtained at AOT-compilation phase even using symbolic
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execution approaches, which are hardly implementable on IoT de-
vices. Therefore, WAIT uses a run-time memory access checker
and a linear memory jump table to ensure the memory is legally
accessed (EM-1).

Variable instructions. The variable instructions (e.g., GET_LOCAL
and SET_GLOBAL) manipulate the global and local variables that
reside in the stack rather than linear memory. Different from the
memory instructions, the index that variable instructions access is
explicitly expressed by the operand. Hence, WAIT statically checks
if the index is illegal (CM-3), and whether the instructions are mod-
ifying variables that are set to immutable (CM-4 and CM-5). These
variable instructions checks also contribute to preventing third-
party programs from modifying the generated executable code. If a
malicious program could access outside of its linear memory, it may
further modify the generated executable code, take the full control
of the IoT device, and leads to unpredictable results. CM-3 and
CM-4 can prevent the illegal linear memory access, which prevents
the potential malicious program from modifying key data and code.

4.3 Energy optimization of the compilation and
execution phase

The above lightweight runtime enables basic execution of We-
bAssembly, and the two-phase sandbox checks ensure execution
safety. In this subsection, we push a step further towards optimizing
the energy consumption of both the compile-time and execution-
time.

Bulk instruction writing at compile-time. During AOT com-
pilation, WAIT reads the bytecode, performs translation and writes
the generated code back to the Flash for execution. During our pre-
liminary implementation, it turned out that writing each translated
instruction instantly to the Flash introduces a lot of overhead.

Under our further investigation, we found that the Flash offers
random-access read operations but does not offer the random-access
rewrite due to its electrical characteristics [35]. In most writing
situations, the whole block needs to be erased first and then written
with new data, even if there is only one byte to write. Furthermore,
the Flash will not store information reliably if it has been erased
too many times. This writing characteristic of Flash requires us to
reconsider how to save the translated instructions.

To address this problem, WAIT adopts bulk instruction writing
for translated assembly. We retain a buffer in RAM to temporarily
save the compiled native instructions. Once the buffer is full, we
perform a bulk write of the buffer data to Flash. The buffer size
is set to the same as the block size to minimize overhead brought
by the bulk write. We also apply this approach to the writing of
constant data to Flash. Note that during execution time, we do not
employ bulk write because postponing some writes will lead to
stale data read by the application.

IoT-related APIs and I/O direct accessing at run-time. There
are two prominent differences that distinguish IoT applications and
the ones run on PCs or servers: peripheral accessing and duty-
cycling. WebAssembly does not support these two operations at
the binary level. To facilitate applications with these important
features, WAIT provides programming APIs for developers and
efficient run-time supports for these features.

API design.The primary design consideration ofWAIT’s peripheral-
accessing APIs is not to implement APIs for every kind of periph-
erals. This will add additional overhead to store nearly identical
implementations, such as providing both temperature read and
light read APIs even if they share the same underlying protocol to
communicate with MCU. Based on our investigation of applications
from popular IoT forums [2, 12], we found that the peripherals gen-
erally communicate with the MCU using the following protocols:
Analog, Digital, UART, I2C, PWM and SPI. Hence, WAIT focuses on
providing APIs for the above protocols, which will further enable
all kinds of sensor manipulation. Moreover, to facilitate the duty-
cycling on IoT devices, WAIT also provides WAIT_sleep() API to
set the device to low-power mode. On the other hand, benefited
by the multi-language support of WebAssembly, the cloud-device
applications could be compiled from several high-level languages
such as C, Rust and Go. Hence, the IoT-related APIs that WAIT
provides also supports various languages. For example, to use our
Rust API to read data from a digital sensor, developers should firstly
declare WAIT’s API as an external function as follows:

1 #[wasm_bindgen]
2 extern {
3 pub fn WAIT_readDigital(pinNum: i32) -> (val: i32);
4 }

Similarly, the WAIT C API to read the digital sensor is:

1 extern int WAIT_readDigital(int pinNum);

Then, developers could use the declared function in their application
akin to other system calls, and these APIs will be processed during
our AOT compilation.

I/O direct accessing. The only challenge that remains now is how
WAIT supports the above APIs at run-time. The simple answer to
this question is that we implement each API in our runtime and
import these implementations to the application via the IMPORT
mechanism of WebAssembly. However, this approach introduces
extra invocation cost at run-time because calling an external func-
tion needs to break out from our sandboxed execution, go through
several safety checks and finally call the imported functions. By tak-
ing advantage of our AOT compilation, WAIT has the opportunity
to modify the translated assembly. Hence, during AOT compila-
tion, WAIT replaces the instructions that call the imported function
with the assemblies that directly access the peripheral (or fall into
sleep mode) via binary rewriting technique. This direct access is
facilitated by the I/O direct accessing mechanism, which uses the
registers to interact with the peripherals and could further reduce
the accessing energy consumption.

4.4 Device-cloud Integration Agent
Besides the building blocks we described above, we also imple-
mented the device-cloud integration agent who communicates with
the cloud server periodically to check if there is a WebAssembly
module to load.

Because the resource-constrained devices lack multi-thread sup-
port, the agent is implemented as an interrupt service routine (ISR)
and invoked by a pre-set timer. The communication period is set to
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1 case I32Add: // Generate the assembly for Wasm 32-bit integer add
2 {
3 emit_x_POP_32bit(R22); // Pop operands from the Wasm's stack
4 emit_x_POP_32bit(R18);
5 emit_ADD(R22, R18); // Perform the 32-bit add
6 emit_ADC(R23, R19); // ADD means "add without carry"
7 emit_ADC(R24, R20); // ADC means "add with carry"
8 emit_ADC(R25, R21);
9 emit_x_PUSH_32bit(R22); // Push back the result to the stack
10 ts.stack_top--;
11 break;
12 }

Figure 5: Code snippet of generating the native assembly for
WebAssembly instruction I32.Add.

1 #define OPCODE_ADC 0x1C00 // Opcode of ADC on ATMega128
2 #define emit_ADC(dest, src) emit_op2arg(OPCODE_ADC, dest, src)
3 // Emit (write) instructions to the flash
4 void emit(u16 opcode) {
5 emit_raw_word(opcode);
6 }
7 // Generate the binary format of the instructions with 2 args
8 // May vary across different platforms
9 void emit_op2arg(uint16_t opcode, uint8_t dest, uint8_t src) {
10 return emit(((opcode) + ((dest) << 4) + srcReg2Bin(src)));
11 }

Figure 6: Code snippet of the conceptual assemblies and the
emit functions.

five minutes empirically considering the tradeoff between repro-
gramming timeliness and battery lifetime of the device because we
notice software updates occur only once per day on average in an
actively developed in-the-wild deployment of IoT devices [14, 37].

5 IMPLEMENTATION
In this section, we introduce the implementation details of WAIT.

Implementation details of WAIT. We have implemented
WAIT for the Atmel ATMega128 micro-controller with 4KB RAM
and 128KB Flash, which is widely used in sensing platforms [15, 43].
The implementation of WAIT includes over 5000 lines of C code.
The core code occupies 27KB of the 128KB program memory.

Platform portability of WAIT. During the implementation of
WAIT, we take the porting simplicity into full consideration and try
our best to ease porting overhead. We take the implementation of
generating native assembly for WebAssembly instruction I32Add
as an example. The code snippet of the generation is shown in
Figure 5. We abstract the platform-dependent native assemblies by
conceptual assemblies using C macros in the implementation of each
bytecode. Functions beginning with emit_ prefix are the macros of
conceptual assemblies. We select these conceptual assemblies by
investigating the common assembly instructions across multiple
ISAs (e.g., AVR, MSP). For example, the definition of emit_ADC and
the related functions are shown in Figure 6. With these conceptual
assemblies, to port WAIT to a new platform (e.g., MSP), developers
should (1) Modify the OPCODE_ADC according to MSP’s instruction
datasheet [47]. (2) Modify the function that generates the binary
format of the instructions (emit_op2arg() in Figure 6). (3) Because
of the Ahead-of-Time compilation mechanism, WAIT puts a con-
straint on the platform being ported to that it needs to support
executing code from the writable region. Hence, the developer
should also declare the memory layout for the new platform in the

linking script of WAIT that is used for placing the .wait section. If
the target platform leverages a different op-code width (e.g., 64-bit),
developers are required to re-construct the conceptual assemblies
to cope with the width.

The conceptual assemblies act as a bridge between our imple-
mentation and various platforms, which could reduce the porting
overhead of WAIT.

6 EVALUATION
In this section, we test WAIT to answer the following questions:

• How do the lightweight methods of WAIT reduce the RAM
usage on resource-constrained IoT devices?

• What is the result after we apply the overhead mitigation
approaches that WAIT designs for the sandbox checks?

• What is the performance of WAIT’s energy optimizations?

6.1 Methodology
Benchmarks. To make our experiment closer to reality, we use

six comprehensive benchmarks from real-world IoT applications to
evaluate the performance of WAIT. The benchmarks are:

• BSrch. It uses binary search to obtain certain sensing data.
• FFT. It performs Fast Fourier Transform on input samples,
which is a CPU-intensive application.

• LEC. It performs lossless data compression on sensor data [39].
• Outlier. It obtains a set of sensor readings, saves them in
the buffer and finds the potential outlier, which is an I/O
intensive application.

• HeatC. It uses an 8x8 heat sensor to track an object. It is
divided into a calibration and a detection stage [43]. This
benchmark performs the calibration stage.

• HeatD. This benchmark is the detection stage of the object
tracking application using heat sensor.

All of the benchmarks are compiled using wasi-sdk-12.0 at
optimization level -Os.

Baselines.We use the following existing works to illustrate how
WAIT achieves lightweight, efficient and power-saving execution
of WebAssembly:

• WAMR [9]: the state-of-the-art WebAssembly AOT runtime
on Linux-compatible devices with minimum memory foot-
print among those listed in Table 1.

• Wasm3 [50]: the most commonly used WebAssembly inter-
preter on resource-constrained IoT devices.

• Native: to directly execute the application compiled from C
language.

Furthermore, we also include the comparison against two software-
based safety protection approaches, t-kernel [19] and Harbor [30],
to depict the run-time overhead introduced by the sandbox checks
of WAIT.

6.2 Runtime memory footprint
In order to evaluate the performance of our lightweight methods
described in Section 4.1, we measure the RAM usage of the bench-
marks with different WebAssembly runtimes. Because WAIT is the
only WebAssembly AOT runtime that could execute on resource-
constrained IoT devices as far as we know, we measure the RAM
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usage of WAMR and Wasm3 on compatible IoT devices and sub-
tract the RAM usage of other services on that device (e.g., the OS).
Note that we only illustrate the RAM usage of the compilation or
preparation stage of the baselines except the native because it does
not have a translation/compilation stage on the device.

Figure 7 shows the average and peak memory consumption
of each benchmark. The red line denotes the RAM limit (4KB) on
ATMega128 MCU. We can see from the figure that only WAIT could
achieve successful execution of all the benchmarks on this MCU.
Even using native execution, HeatC and HeatD is not executable
because they have a large amount of constant data which exceeds
the RAM limit. The constant remapping moves the constants to the
Flash and makes them executable. The peak RAM consumption of
WAMR and Wasm3 are 84.9× and 13.6× of WAIT’s, respectively. To
be more specific, we have the following three observations.

(1) Compared with the baselines, WAIT is more suitable for
executing WebAssembly on resource-constrained devices. From
constrained to powerful, IoT devices are grouped into C0, C1 and
C2 classes according to RFC7228 [25] proposed by the Internet
Engineering Task Force (IETF). To further illustrate the detailed
RAM footprint and compare it with the constraints of each group
of IoT devices, we depict the RAM consumption of each approach
throughout the compilation and execution stage in Figure 8 with
the memory upper bound of C1 and C2 devices. We can see that
WAIT is the only WebAssembly runtime to execute on C0, C1 and
C2 devices. Although both are AOT runtimes, WAMR uses more
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Figure 9: Breakdown of the RAM gain of each lightweight
method of WAIT.

memory than WAIT because it uses the heavy-weight LLVM as
the compilation backend, which even exceeds the upper bound for
C2 devices. Wasm3 is only suitable to execute on C2 devices, but
its run-time efficiency is lower than the AOT runtimes because
its interpreted execution introduces higher overhead than directly
translating the bytecode into assemblies.

(2) The second observation is each of the three lightweight meth-
ods of WAIT contributes to the final low memory footprint. We
depict the free available RAM during the execution of each bench-
mark with or without our lightweight methods in Figure 9. We
use "Base" to represent the execution without any optimizations,
"Stream" for the streamed look-back compilation, "Trim" for post-
compile memory trimming, and "Remap" for constants remapping.
We can see that none of the benchmarks are compilable without
the streamed look-back compilation. Furthermore, our memory
trimming technique facilitates the execution of FFT, and constant
remapping moves the constants of HeatC and HeatD to the Flash
to make them executable.

(3) We also find in Figure 8 that compared with the native ap-
proach, WAIT introduces 254 bytes run-time RAM overhead. This
extra RAM usage is introduced by the size of .wait segment, which
saves the necessary data for the execution of WAIT. We consider
this overhead is acceptable, and the overhead can be counteracted
by our constant remapping technique.

6.3 Sandbox check optimization
We now move on to the second question: how do our overhead
mitigation approaches perform in our sandbox checks?

To be more specific, WAIT optimizes the overhead of sandbox
checks by:

• Moving some of the execution-time checks to compile-time,
i.e., EC-2, EC-3 in Table 2.

• Only examining the instructions that will grow the stack
instead of all the instructions when checking the potential
stack overflow.

Hence, towards answering the initial question, we compare the
execution overhead of "check all at execution", "unoptimized run-
time", which do not include our optimization to stack overflow
checks, and the optimized sandbox runtime with the unsafe version
of WAIT (i.e., canceling all the checks in Table 2) in Figure 10.

We observe a 19.1% average overhead of our optimized runtime
compared with the unsafe version, which performs better compared
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with the overhead of existing software-based protection approaches,
t-kernel (50%-150%) and Harbor (380%-690%). This performance
gain is mainly achieved by our faster memory protection checks.
For example, Harbor uses a per-block safety check which uses
65 cycles, while our memory access check (EM-1) uses only 33
cycles. Moreover, WAIT achieves 89.0% average overhead reduction
compared with performing checks mostly at run-time and 12.9%
reduction than the unoptimized safe runtime.

We also investigated the compilation time overhead with or with-
out our sandbox check optimization techniques. The results are
shown in Figure 11. We can see from the figure that our optimiza-
tion approaches also facilitate faster AOT compilation compared to
checking all at execution or the unoptimized ones. On average, our
optimization results in a 12% reduction in AOT compilation time
compared to unoptimized ones and 32.3% compared with checking
all at execution. This improvement seems to be counter-intuitive
because our optimization approaches move several checks to com-
pilation time, which is supposed to increase the AOT compilation
time. According to our further investigation, we found that the
additional time of the unoptimized compilation is mainly used for
issuing the instructions that are needed for runtime checks. Issuing
additional instructions needs to write more data to the Flash during
AOT compilation, which is a time-consuming job. On the contrary,
moving the run-time checks to compilation time only requires us to
add a few additional data structures, and call the checking functions
whose overhead is negligible.
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6.4 Energy reduction of WAIT
Nowwe reach the last question: howmuch energy could be saved by
the optimizations of WAIT? In order to give an intuitive illustration
of our energy optimization, we build a battery lifetime model for
ATMega128 MCU based IoT prototyping board, including the MCU,
networking and other peripherals, proposed in [14]. We evaluate
the energy saving against different WebAssembly module update
frequencies and sleep intervals of the IoT device. Upon each update,
the IoT device receives a newWebAssemblymodule via the network,
then WAIT compiles the module, and starts the module for data
collection and processing. Our energy model takes all the above
procedures into consideration, and we use a widely-used 2200mAh
NiMH battery as the power supply.

We first show how the device lifetime varies and the multiplier
between lifetime with and without our energy optimization against
the update frequency in Figure 12. Our energy optimization ap-
proaches reduce overall energy use and result in a battery life-
time increase of 1.9 to 4.9×. As we expected, the benefit of our
energy-saving methods is larger when the WebAssembly module
is frequently updated. For example, our optimization technique
achieves 3.1× longer lifetime when the update interval is 1 day
and 1.9× when updates every seven days for BSrch benchmark.
This is because the bulk writing technique of WAIT could reduce
the compile-time energy consumption for writing the Flash to a
large extent, which finally turns out to be larger benefits when the
module is more frequently updated.
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Table 3: Effect of constant remapping

Bchmrk. Const.
size (B)

Const.
remap

Size in
Flash (B)

Size in
RAM (B)

Perf.
overhead

FFT 2,075 No 0 2,331 0
Yes 2,075 256 +15.89%

LEC 512 No 0 1,601 0
Yes 512 1,089 +13.07%

HeatC 16,798 No N/E1 N/E1 N/E1

Yes 16,798 768 N/A2

1 N/E: Not executable due to its RAM requirement exceeds the available RAM.
2 N/A: Not available due to its comparing method is not executable.

The IoT applications are executed intermittently with duty cy-
cles. Hence, to further characterize the energy gain brought by
the two energy optimizations of WAIT, we illustrate the device
lifetime variation with respect to each optimization against sleep
interval between two executions in Figure 13. We use two bench-
marks as representatives: the Outlier is an I/O-intensive benchmark
that reads the peripherals massively while FFT is a computation-
intensive task. We can see from the figure that the I/O direct ac-
cessing optimization achieves better performance when the sleep
interval is small. Moreover, this optimization is more obvious for
the I/O intensive task, which is also reasonable because the I/O
intensive tasks trigger more times of our optimization than the
computation-intensive ones.

6.5 Overhead of WAIT
The run-time overhead of WAIT mainly comes with three aspects:
the RAM usage of WAIT runtime (discussed in Section 6.2), the
extra cycles brought by sandbox checks (discussed in Section 6.3),
and the time used for accessing remapped constants. Hence, we
evaluate the overhead of constant remapping and illustrate the
results in Table 3.

The most noticeable benefit of constant remapping is that the
HeatC is executable only with this optimization. With remapping,
WAIT moves constants of HeatC (16,798 bytes) to Flash during AOT
compilation to facilitate its execution. This technique could also be
enabled for executable applications (e.g., FFT and LEC benchmark in
Table 3). If we enable remapping for these applications, it could save
more RAM space. For example, the RAM usage of LEC drops from
1,601 bytes to 1,089 bytes, and the remaining RAM usage is used
by non-constant variables, stacks, etc. Nevertheless, reading data
from Flash instead of RAM will inevitably slow down the memory
manipulating instructions and results in run-time overhead (15.89%
for FFT and 13.07% for LEC).

7 DISCUSSION
In this section, we discuss several open issues in the design ofWAIT.

7.1 Usage scenarios of WAIT
WAIT facilitates a “seamless” device-cloud integrated IoT applica-
tion with the aid of WebAssembly, which means the computation
module could be transmitted among the devices without any modi-
fication. To be more specific, WAIT is especially beneficial to the
following two types of device-cloud integrated applications.

(1) The application involves devices of heterogeneous ISA. This
situation is common both in cloud-device integrated applications

(the server uses x86 and IoT uses AVR or ARM) such as smart
healthcare applications (e.g., multi-device collaborated seizure onset
detection [41]), and in the collaborative applications only with IoT
devices (IoT uses ARM32, ARM64, Xtensa, etc.) such as federated
learning with IoT devices [42].

For example, WAIT is beneficial to the city-scale surveillance ap-
plications [24], which need to deploy different computation stages
on a hierarchy of computing devices – cameras, private clusters
and public clouds and the application to be deployed changes over
time.

(2) Developers of the application are from diverse programming
language backgrounds. For example, the prevalent Function-as-a-
Service (FaaS) computing schema decomposes an application into
many functions and each function could be implemented using
various languages. Existing works use Docker as the underlying
runtime to execute the functions, which is not portable among het-
erogeneous devices and too heavyweight for IoT devices. By virtue
of WebAssembly’s multi-language support, WAIT could facilitate
FaaS on a vast range of devices, even on resource-constrained IoT
devices, by deploying functions as WebAssembly modules.

7.2 Design alternatives of WAIT
We now discuss the alternatives we considered during the design
and implementation of WAIT, and why we adopted the current
design.

LLVM or build from scratch? Existing AOT runtimes of We-
bAssembly [9, 51] commonly use LLVM [38] to perform the trans-
lation from WebAssembly to native assembly. By virtue of LLVM’s
modularity and reusability, these runtimes could be ported to dif-
ferent hardware platforms with relatively low effort. Nevertheless,
the usage of LLVM incurs a significant footprint, especially for the
AOT stage before execution, as shown in Section 6.2. Hence, WAIT
chooses to build a resource-friendly WebAssembly AOT runtime
from scratch. LLVM is a good choice if the computation resources
are abundant, while WAIT is surely a better choice for IoT devices
which are usually resource-constrained. As we described in Sec-
tion 5, we consider the portability of WAIT all through the design.
We also consider the automatic approach that porting WAIT to new
platforms as our future work (e.g., similar to [23]) to remove the
human-in-the-loop and increase the portability of WAIT.

Compile WebAssembly to native on cloud or device? Stor-
ing the WebAssembly modules on the server and compiling them
to the native assembly of target IoT devices on-demand is a viable
alternative toWAIT’s on-device AOT compilation. Performing AOT
compilation on the cloud could reduce the run-time overhead of the
IoT device. Nevertheless, if we do so, the system portability will be
greatly reduced and the complexity will be greatly increased. This
is because it may require compiling and saving binaries for hetero-
geneous IoT devices on the cloud and dispatching each binary for
its target device during run-time.

This portability brought by WAIT’s approach is necessary for
two types of applications: (1) Applications that need ad-hoc or
peer-to-peer computation migration, such as vehicle to everything
(V2X) computing [3, 5], mobile agent computing [10, 40], and per-
sonal area network (PAN) [17, 46]. We use the V2X computing as
an example, which means that cars could communicate with the
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roadside units (RSU) and migrate computing tasks such as navi-
gation planning to the RSUs with tight timeliness requirements.
Without WAIT’s portability, each migration involves a device-to-
cloud communication for downloading AOT compiled modules,
whose latency is unpredictable due to the complicated network
environment. (2) Applications with bi-directional security require-
ments, i.e., the application does not trust the computing device and
vice versa. The smart contract application [22, 27, 52] is the most
suitable case. The sandboxed execution facilitated by WebAssembly
and WAIT is necessary for these applications, and compiling to
native code on the cloud enlarges the attack surface.

7.3 Tradeoff of the lightweight design of WAIT
As we describe in Section 4, WAIT adopts several lightweight ap-
proaches to run on resource-constrained devices. Some of the high-
end features of WebAssembly are not included in WAIT for this
lightweight design.

We categorize the unsupported features by their distance to the
core WebAssembly specification. (1) The minimal viable product
(MVP) features. The MVP features form the initial release of We-
bAssembly, including the binary format, linear memory, etc. WAIT
implements all the MVP features of WebAssembly and adds the
IoT-related APIs for developers. (2) The post-MVP features. Based on
MVP, WebAssembly continues its evolution and the newly added
features are post-MVP features. Among the post-MVP features,
WAIT currently does not support the threading, 128-bit SIMD
(single-instruction multiple-data), and 64-bit addressing. We ar-
gue that these high-end features are barely used in IoT applications
or are even not supported by IoT devices. (3) Extra features that are
not included in the specification or those are still in the proposal stage.
These features are not yet standardized, and may vary in the future,
e.g., GPU-accelerator support. Hence, we also omit these high-end
features in WAIT for lightweight.

It is worth noting that these features are not implemented by
choice, and WAIT can be extended to support the high-end features.
For example, to implement the 128-bit SIMD post-MVP feature, we
could add a new entry for the SIMD instruction of WebAssembly
(e.g., the I8x16.MUL instruction for simultaneously multiplying 16
8-bit integers) similar to Figure 6, and implement the translation
with native SIMD assemblies. In the short term, our lightweight
design could enable the first step in bringing WebAssembly to
existing IoT devices and accelerate the adoption of WebAssembly
in the IoT domain. Furthermore, in the long-term future, WAIT
could evolve with advances in IoT hardware, help developers to
build hardware-independent applications, and facilitate the Web of
Things vision [49].

8 RELATEDWORK
In this section, we summarize the efforts towards device-cloud in-
tegration, the attempts to bring WebAssembly outside the browser,
and the safety guarantees for IoT devices.

Systems for device-cloud integrated applications.Many sys-
tems have been proposed for supporting the device-cloud integrated
applications. These approaches could be classified to three cate-
gories: VM-based [44, 48], native-based [20, 31], and CLR-based [11,
26, 29, 33] solutions by the underlying technologies they use.

The VM-based approaches [44, 48] share the application logic
between different platforms bymigrating the whole virtual machine
image. These approaches require too many resources which are not
available on IoT devices.

The most recent native-based methods are EdgeProg [31] and
TinyLink 2.0 [20]. These works propose domain specific languages
(DSL) to enable users to express the application logic across multiple
hardware devices in one piece of code. Taking the applications
written in DSLs as input, EdgeProg and TinyLink 2.0 separate the
code and generate the executables for each device. The native-based
method is hard to support fine-grained program state migration
due to the different memory layouts between architectures and
each partition update at runtime needs binary re-generation.

Considering the drawbacks of the above two categories, WAIT
chooses the CLR-based solution to achieve device-cloud integra-
tion on resource-constrained IoT devices. The existing approaches
leverage common language runtimes to achieve seamless migration.
For example, MAUI [11] uses C#, ThinkAir [29] and COMET [18]
uses Java, and EveryLite [36] uses JavaScript. Among the exist-
ing CLR-based approaches, the most related one is WiProg [33],
which uses WebAssembly as the underlying migration technology.
WiProg focuses on how to provide offloading annotations to la-
bel the placement of each method and how to efficiently migrate
the WebAssembly module among devices. Orthogonal to WiProg,
WAIT focuses on how to embrace the resource-constrained devices
to the WebAssembly-based device-cloud integration.

Approaches towards safe execution on IoT devices. Ensur-
ing the safe execution of applications is one of the vital characteris-
tics of an IoT system.

Some efforts to protect the safe execution on IoT devices are
through software-based approaches. For example, Gu et al. pro-
pose t-kernel [19], which is a safe kernel for IoT devices. The
t-kernel advocates a software-based paging mechanism for IoT
devices to keep memory safety. Harbor [30] employs a memory
map to record the ownership and layout information of memory
regions and implements a safe stack that stores return addresses
in a protected memory region to ensure the control-flow integrity.
Moreover, CapeVM [43] leverages the metadata in Java bytecode
to perform compile-time and run-time sandbox checks to ensure
the safe execution of Java bytecode on IoT devices. Compared with
these existing approaches, WAIT moves most of the checks to the
AOT compiling process, which could reduce the overhead of safety
checks.

9 CONCLUSION
In this paper, we propose WAIT, a WebAssembly AOT runtime on
resource-constrained devices for device-cloud integrated applica-
tions. WAIT is the first work to facilitate the AOT compilation of
WebAssembly on constrained devices by leveraging several light-
weight methods. Moreover, WAIT achieves efficient sandbox ex-
ecution by moving most of the run-time checks to compile-time.
Furthermore, WAIT advocates a set of IoT-related APIs to enable
the full IoT programming for WebAssembly and optimizes the run-
time power consumption by bulk instruction writing and I/O direct
accessing. Results show that WAIT reduces the RAM usage by 85×
and the energy consumption by 1.2× to 4.9×.
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