This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3377696

IEEE TRANSACTIONS ON MOBILE COMPUTING

Energy Optimization for Mobile Applications
by Exploiting 5G Inactive State

Zhi Ding,Yuxiang Lin,Weifeng Xu,Jiamei Lv, Yi Gao, Member, IEEE, and Wei Dong, Member, IEEE

Abstract—The high energy consumption of 5G New Radio poses a major challenge to user experience. A major source of energy
consumption in User Equipments is the radio tail, during which the UE will remain in a high-power state to release the radio sources.
Existing energy optimization approaches cut radio tails by forcing the UE to enter a low-power state. However, these approaches will
introduce extra promotion delays and energy consumption with soon-coming data transmissions. In this paper, we first conduct an
empirical study to reveal that the 5G radio tail introduces significant energy waste on UEs. Then we propose 5GSaver, a two-phase
energy-saving approach that utilizes the inactive state of NR to better eliminate the tail phenomenon in 5G cellular networks. 5GSaver
identifies the end of App communication events in the first phase and predicts the next packet arrival time in the second phase. With
the learning results, 5GSaver can automatically help the UE determine which radio resource control state to enter for saving energy.
We evaluate 5GSaver using 15 mobile Apps on commercial smartphones. Evaluation results show that 5GSaver can reduce radio
energy consumption by 9.5% and communication delay by 12.4% on average compared to the state-of-the-art approach.

Index Terms—5G, Energy Saving, Machine Learning

1 INTRODUCTION

HE fifth-generation (5G) is a promising technology that
Tis being widely used in smartphones. It has been re-
ported that the unit shipments of 5G-enabled smartphones
will reach 1.5 billion by 2025 [1]. For end users, 5G is meant
to deliver high multi-Gbps throughput, ultra-low latency,
and massive network capacity. Higher performance and
improved efficiency of 5G can significantly improve mobile
user experiences.

However, 5G also brings non-negligible energy costs.
Though 5G New Radio (NR) is energy-efficient, its energy
consumption per unit time can be up to three times more
than legacy radios due to its higher data rates, more an-
tennas, and more powerful radio frequency modules [2],
[3], [4]. Efficient energy management is extremely important
for 5G smartphones with limited battery capacity. Extensive
research on 3G/4G radio energy management [5], [6], [7],
[8] reveals that a large proportion of energy consumed
by radio resources is due to the radio tail phenomenon,
which refers to the period during which the radio interface
will keep high-power states after the completion of data
transmissions [5]. Many studies try to cut the 3G/4G radio
tail by adopting the fast dormancy mechanism [9], under
which a smartphone can ask for an immediate release of
radio links and leave the high-power states rapidly after the
End Of Communication (EOC) events.

Though there exist preliminary measurement studies [2],
[10] and configuration researches [11] on 5G energy con-
sumption, we are the first to focus on energy optimiza-

e Z. Ding, W. Xu, |. Lv, Y. Gao, and W. Dong are with the College
of Computer Science, Zhejiang University, Zhejiang 310027, China.
Y. Lin is with the Alibaba Group, Zhejiang 311121, China. E-
mail: dingzhi@zju.edu.cn, bizhi.lyx@alibaba-inc.com, xuwf@zju.edu.cn,
lojm@zju.edu.cn, {gaoyi, dongw}@zju.edu.cn.

Manuscript received xx xx xxxx; revised xx XX XXXX.
Date of publication x.xxxx; date of current version x.xxxx.
Corresponding author: Yi Gao and Wei Dong.

tion for mobile applications on 5G smartphones with 5G
tail-cutting while existing work has focused more on 5G
measurements. This paper intends to answer the following
questions.

What are the energy consumption characteristics of 5G
radio on smartphones? In particular, whether the energy
tail phenomenon still exists in 5G, and what is its impact?
To investigate the energy consumption of 5G NR, we have
conducted an empirical study on smartphones. The study
has verified that the energy consumption of 5G NR on
User Equipments (UEs) is almost twice that of 4G LTE.
Furthermore, our empirical study shows that the radio tail
phenomenon still exists in 5G NR. Surprisingly, we find that
the high throughput of 5G has instead made the energy
waste of radio tails more significant than legacy 3G/4G
radios due to the relatively shorter data transmission time
of 5G. For example, it takes only 4 seconds to download
a 50MB file in 5G networks, but the radio tail will take
nearly 16 seconds, leading to an 80% radio time waste and a
serious waste of battery energy in UEs. This ratio can further
increase with more small transmissions in the network.

Are existing 3G/4G tail cutting approaches [12], [13]
still effective for 5G? Existing 4G tail cutting approaches
that simply cut the tails without considering the following
traffic pattern would cause non-negligible energy costs and
delays in 5G scenarios. No matter when to invoke fast
dormancy, a new transmission may start just after an EOC
event. In this case, the radio interface needs extra promotion
energy and long promotion delays to switch from idle
states to active states for the required data transmission.
From our empirical study, we find that the inactive state
RRC_INACTIVE [14], which is a newly introduced Radio
Resource Control (RRC) state in 5G NR, can help solve
the above issue. The RRC_INACTIVE state [14] has low
energy consumption and allows the UEs to fast transit to
active states for data transmission. However, existing tail

Authorized licensed use limited to: Zhejiang University. Downloaded on June 10,2024 at 12:15:48 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3377696

IEEE TRANSACTIONS ON MOBILE COMPUTING

cutting approaches are ineffective for 5G NR since they
cannot determine whether to enter the inactive state or the
idle state after detecting an EOC event. Besides, though
previous work [15], [16] which explored the impact of the
RRC idle state to the energy consumption of UEs leveraged
the state to optimize the tradeoff between energy efficient
and packet delay in 5G scenarios, they didn’t take radio
tail into consideration, which leads to more ratio time waste
in 5G networks. Instead, we effectively utilize this inactive
state for 5G energy savings by predicting the next packet
arrival time after EOC events.

How can we devise better energy optimization ap-
proaches by using RRC_INACTIVE state and what are
the implications for future mobile systems/Apps designs?
The addition of an intermediate state like RRC_INACTIVE,
which enables energy-saving in 5G, poses certain chal-
lenges. One of the key challenges is related to the latency
and responsiveness. The RRC_INACTIVE state introduces
additional latency compared to an always-connected state.
When a UE transitions from RRC_INACTIVE to an active
state, there may be a delay in reestablishing the connection
and resuming data transmission. Minimizing this latency
and ensuring a responsive user experience are crucial chal-
lenges. Besides, the introduction of the RRC_INACTIVE
state requires careful network planning and optimization.

In this paper, we propose 5GSaver, a 5G radio energy-
saving approach for mobile Apps. To minimizing the overall
latency of transitions from RRC_INACTIVE to an active
state, 5GSaver identifies the EOC Events and fast recovery
events to help UE enter correct RRC states so that the
number of transitions from the RRC_INACTIVE state to
the active state of the UE is as small as possible. 5GSaver
adopts a two-phase approach: 1) in the first phase, 5GSaver
learns the features of EOC Events (cIEOC) and identifies
EOC Events with Random Forest (RF), and 2) in the second
phase, if an EOC event is identified, 5GSaver predicts the
next Packet Arrival Time (PPAT) with Deep Forest (DF)
by exploiting program execution patterns as well as per-
application statistics. Considering that the frequency of EOC
events is much lower than that of non-EOC events for many
Apps, the two-phase approach yields high identification
accuracy and low computational overhead. We use the data
item that contains these features over a predefined period
as the basic training and recognition unit. Compared to
packet granularity, data items can both capture temporal
correlation and further reduce computation overhead. At
runtime, 5GSaver can intelligently determine which NR
state to enter with the learning results. When 5GSaver
estimates the transmission will continue, the UE will stay
in the active state. When the next packet arrival time is
predicted to be close to the EOC event, 5GSaver will guide
the UE to enter the inactive state. Otherwise, 5GSaver will
invoke fast dormancy to enter the idle state. In 5GSaver,
parameters such as timers, thresholds, and handover mech-
anisms are also fine-tuned to achieve the desired balance
between energy savings and network performance.

We implement and evaluate 5GSaver using 15 different
mobile Apps on 3 smartphones and conduct extensive trace-
driven experiments. With authorization and cooperation
from the 5G operator’s infrastructure, 5GSaver is easy to in-
tegrate into smartphones without additional modifications

2

to upper-layer applications. Evaluation results show that
compared to commercial strategies, 5GSaver can achieve
significant savings on energy (38.4% on average) while in-
troducing acceptable delays. Compared to a state-of-the-art
approach RadioJockey, 5GSaver can reduce the radio energy
cost by 9.5% while reducing the communication delay by
12.4% on average.

In summary, we make the following key contributions:

(1) We present an extensive empirical study on App
energy consumption on 5G smartphones. We observe that
5G NR consumes much more energy than 4G LTE and the
radio tail phenomenon will have a greater impact on the
energy consumption of 5G NR.

(2) We reveal that existing tail cutting approaches for
4G are not efficient in optimizing 5G energy. We identify
two specific reasons leading to the inefficiencies: 1) do not
consider the soon coming next data transmissions; 2) do not
consider the newly introduced inactive state of NR.

(3) We propose a two-phase energy-saving approach,
5GSaver. Evaluation results show 5GSaver outperforms ex-
isting tail optimization approaches for both energy savings
and communication delays.

2 RELATED WORK

In cellular networks, the radio tail phenomenon contributes
a large fraction of radio energy consumption [2], [8], [17],
[18]. Existing approaches for mitigating the radio tail phe-
nomenon for 3G/4G radio can be classified into 1) Tail
aggregation approaches and 2) Tail cutting approaches. We
will also introduce some early efforts in 5G energy measure-
ment and optimization.

2.1 Tail Cutting

Tail cutting approaches aim to directly shorten the radio tail
time. Early researches mainly focus on setting an appropri-
ate inactivity timer [19], [20]. Many commercial smartphone
models typically invoke fast dormancy with a fixed short
inactivity timer, ranging from 3s to 5s [13]. Falaki et al. [19]
observe that 95% of inter-packet arrival times lie within
4.5 seconds and set the inactivity timer to this fixed value.
However, the tail duration is application-dependent and
should be adaptable to the target Apps. A fixed inactivity
timer is not suitable for diverse and complex mobile Apps.
Even if a reasonable tail duration is found, the tail time
still exists and causes considerable energy waste in these
approaches. On the contrary, 5GSaver can enter the correct
states right after detecting state-related features.

Recently, several studies [12], [13], [17], [21] use learning-
based approaches to dynamically terminate the high-power
tail. Top [13] provides a tail removal API for applications to
leverage the fast dormancy feature. Deng et al. [21] invokes
fast dormancy using a dynamic inactivity timer, whose
value is set based on traffic pattern information. Smart-
Cut [17] trains an AutoRegressive Move Average (ARMA)
model to invoke fast dormancy and promote the radio
interface in advance to save energy. RadioJockey [12] uses
a decision tree model to predict EOC events and invokes
fast dormancy if an EOC event has been detected. However,
no matter what inactivity timer value is chosen in the above

Authorized licensed use limited to: Zhejiang University. Downloaded on June 10,2024 at 12:15:48 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3377696

IEEE TRANSACTIONS ON MOBILE COMPUTING

approaches, new network communications may start soon
after the EOC events due to the flattened distributions of
packet intervals (shown in Section 3). When transmitting
data with short-term sleep, these approaches may even
waste more energy due to frequent state transitions.

To address the above issues, 5GSaver utilizes the inactive
state of NR to handle the situation where the UE needs to
quickly resume the communication. When 5GSaver predicts
that the next packet will arrive right after the EOC events,
the UE will be guided to enter the RRC_INACTIVE state
instead of the RRC_IDLE state. This inactive state ensures
the UE can save energy by remaining in a relatively low-
power inactive state while having the ability of fast recovery.

2.2 Tail Aggregation

Tail aggregation approaches reschedule transmission in
batch to reduce the tail energy consumption of small data
transmissions. For example, TailEnder [5] delays trans-
missions and prefetches data for delay-tolerant Apps.
TailTheft [18] performs batching and prefetching in the
tail time to save energy. Bartendr [22] prefetches data un-
der good signal strength for syncing and streaming Apps.
PerES [8] considers not only the tail energy reduction but
also the data transmission energy optimization.

These approaches usually introduce extra delays in
batched packet transmissions. 5GSaver focuses on latency-
sensitive interactive applications that require real-time in-
teractivity, so we go for a tail-cutting approach for better
performance. Specifically, 5GSaver uses learning-based ap-
proaches to determine whether to switch states based on
currently extracted state-related features and thus will not
delay packet transmissions. Besides, the tail aggregation
approach designs need to reproduce the App with their own
delay-tolerant timers. 5GSaver can be implemented without
any changes to the App code. It is worth noting that the
tail aggregation approaches are orthogonal to 5GSaver and
can help further improve the energy efficiency of 5GSaver
in multi-app scenarios. Besides, for some applications that
do not need interactivity and run in the background, tail
aggregation might work well.

2.3 5G Energy Measurement and Optimization

Some recent measurement work [2], [10] conduct measure-
ment studies on 5G energy consumption and propose 5G
mode selection-based power management schemes. How-
ever, these schemes simply determine whether to use 4G
or 5G radios based on the instantaneous traffic intensity
and do not solve the tail problem, which is an essential
source of energy consumption for 5G phones. Besides, the
hardware-based measurement in Narayanan A. et al. [10] is
hard to integrate into 5GSaver-equipped cell phones. Lastly,
our measurement work under 5G networks in different fre-
quency bands in mainland China complements the findings
of Narayanan A. et al. [10].

There also exist some early works on 5G energy op-
timization [11], [23], [24]. For example, Khlass et al. [11]
propose an RRC state handling framework to optimize the
state transition in the RAN/CN. However, these works
cannot adapt to the diverse and changeable traffic patterns
of different Apps. To the best of our knowledge, 5GSaver

3

is the first to utilize the RRC_INACTIVE state to solve the
tail problem for optimizing the energy consumption for 5G
mobile Apps.

3 EMPIRICAL STUDY

In this section, we present an empirical study that considers
four questions about 5G NR energy consumption: (1) How
much more energy does 5G NR consume compared to 4G
LTE?; (2) Does the radio tail phenomenon still exist in 5G
NR?; (3) How do traffic patterns affect existing tail cutting
approaches? (4) When is the inactive state more efficient
than the idle state? The empirical study results provide
important new insight into the 5G NR energy consumption.
Besides, in answering these questions, we provide the mo-
tivation and countermeasures during the development of
5GSaver.

3.1 Background

5G NR has three RRC states, i.e., RRC_IDLE,
RRC_INACTIVE, and RRC_CONNECTED, as defined in Rel-
16 TS 38.331 [14]. Compared to LTE, the RRC_INACTIVE
state is a notable feature. As shown in Figure 1, a UE
will operate simultaneously at a specific RRC state and
can transit among three states. To reduce the signaling
overhead, NR introduces an RRC_INACTIVE state. The
station can initiate the state transition to suspend the RRC
connection and let the UE enter the RRC_INACTIVE state.
When entering the RRC_INACTIVE state, the UE will store
the UE inactive Access Stratum (AS) context and RRC
configuration [14]. At the RRC_INACTIVE state, when the
UE needs to transmit packets, it will resume the suspended
RRC connection, restore the above information, and fast
transit to the RRC_CONNECTED state. Otherwise, the
RRC connection will be released, and the UE will enter
the RRC_IDLE state when the context is no longer valid
or there is no more data transmission. The tail duration is
determined by inactivity timers, which are used to control
the release of radio resources. Whether the UE should
enter the RRC_IDLE state or the RRC_INACTIVE state
is determined based on the requirements of the current
service. By default, if there is no specific request or trigger to
enter the RRC_INACTIVE state, the UE typically transitions
directly from the RRC_CONNECTED state to the RRC_IDLE
state. In summary, the advantages of RRC_INACTIVE state
are that it can significantly reduce signaling overhead,
energy consumption, and connection delay for massive 5G
devices.

3.2 Experimental Setup

Our experiments are based on three different commercial
Android smartphones, ZTE Axon10 Pro, Mi 10, and OnePlus
9. We used the mid-band 5G network provided by China’s
two largest network carriers, China Mobile and China Tele-
com. We have developed a battery status monitoring App
based on Android APIs to obtain instantaneous current
and voltage, and then calculate the instantaneous energy
consumption. When running target Apps, our monitoring
App will run in the background at a sampling rate of 500Hz.
Due to its simple logic, the extra energy consumption of

Authorized licensed use limited to: Zhejiang University. Downloaded on June 10,2024 at 12:15:48 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3377696

IEEE TRANSACTIONS ON MOBILE COMPUTING

Power (W)

| UE inactive
I AS context

RRC
I configuratio

Application & radio type

4
4 [IlRadio BlApp [screen MllSystem 1‘5°| ide [frxfRd Radio Tail [Tdte |
. 128/ | | |
3 ® | | | |
= |Promotlon| I |
2 < 1.00! \ !
g l LTE Radio | I
Tail End NR Radio|
. S 075! o, el |
| | |
0 . 0.50 |
o e 0 74 o 28 35

Time /s

Fig. 1: Three different RRC states and state Fig. 2: Power consumption of differ- Fig. 3: An example trace of radio tail

transitions of UE in 5G NR.

ent applications and radios.

phenomenon in 4G and 5G network.

800
= T
= 700
Los 3
=] 3 600
S04 3
0. 8 500
o [}
2 400
c L
504 E 500
= i1}
%0 2 —Browser 3 200
I —News E 100
Weibo w
0 0

Session 1 Session 2 Session 3

r—Hr—Hr—H

11 |>ts&<t5| 111 1
Linie e

L

4G +5G

ACTIVE EoC(EOC FR) ACTIVE ACTIVE Eoc(EOC IDLE)

ACTIVE ACTIVE

2 3 5

Packet arrival time (s)

10

20 40

60

Network Throughput/Mbps

Case 1 Case 3(Cased) Case2 Case1 Case 3 (Case5) Case1 Case1

80 100

«— Segment <+ Data item — Timeline

Fig. 4: CDF of next packet arrival Fig. 5: Energy efficiency in 4G and 5G net- Fig. 6: Extracting data items from the packet

times. work.

our monitoring App is negligible (the evaluation of the
monitoring App’s energy consumption is shown in Sec 5.4).

3.3 How Much More Energy Does 5G NR Consume
Compared to 4G LTE?

We measure the smartphone’s energy consumption when
running 2 typical Apps: HTTP download and online video
player. Refer to [2] we breakdown the overall 5G/4G energy
cost into 4 parts as follows: (1) To get the system consump-
tion, we turn off the screen and turn on the “airplane”
mode to kill all background Apps. (2) We then measure
the screen element at the maximum brightness with other
settings unchanged. (3) To obtain the power consumption
of the App alone, we load the App’s contents in advance
and run the Apps offline. (4) Finally, we record the energy
trace of the 4G/5G radio interface at normal operations. We
turn on and turn off the 5G mode to measure the energy
consumption of 5G NR and 4G LTE, respectively. For each
App, we repeat the collection process 10 times. We repeated
the evaluation on three smartphones and achieved similar
evaluation results on all three phones, where the results
on the ZTE Axonl0 Pro are shown in Figure 2. Figure 2
shows that the 5G NR radio accounts for 30.1% on average
of the total energy consumption, which is almost twice
the energy consumption of 4G LTE radio. We can also see
that the radio energy consumption has a strong positive
correlation with the App data rate, which is similar to what
was also observed earlier by [2], [10], [25]. This is due to the
following two observations. (1) The same radio type in Apps
with higher data rates (e.g., HITP download) will consume
more energy. (2) The energy consumption variation is more
significant in Apps with higher throughput vibration (e.g.,
online video players).

traces.

5G can provide higher throughput than 4G, so we in-
vestigate how throughput affects device power consump-
tion over 5G and the energy efficiency of 4G vs. 5G at
different throughputs. Through controlled experiments, we
measure the device power consumption when transferring
data over 4G and 5G with different download throughputs.
We run UDP data transfers using iPerf3 and vary the tar-
get throughput. Figure 5 shows the relationship between
network throughput and energy efficiency (energy per bit)
and compares 4G/LTE and 5G. We can find that for both
4G and 5G, the energy consumption per data transfer
unit decreases with increasing throughput. We can also
conclude the higher efficiency when transferring at higher
throughput under 5G. 5G can be less efficient than 4G at
a low throughput but more when the throughput is high.
When mobile phone users use 5G daily, they cannot always
fully utilize the network’s bandwidth resources. Therefore,
in actual daily use, 5G may still consume more energy
when transmitting data of the same size. Hence, 5GSaver
is significant in optimizing the energy consumption of 5G
cell phones.

Implication: Compared to 4G LTE, 5G NR radio consumes
more than twice the energy consumption. Radio energy consump-
tion is highly related to the App throughput.

3.4 Does the Radio Tail Phenomenon Still Exist in 5G
NR?

Figure 3 shows an example trace of different states by
downloading the file in 5G NR and 4G LTE networks. Our
evaluations in 5G networks from different operators yield
similar results. From the evaluation, we can observe that
since there is no specific request or trigger to enter the
RRC_INACTIVE state, the UE transitions directly from the
RRC_CONNECTED state to the RRC_IDLE state without

Authorized licensed use limited to: Zhejiang University. Downloaded on June 10,2024 at 12:15:48 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3377696

IEEE TRANSACTIONS ON MOBILE COMPUTING

transitions to the RRC_INACTIVE state. We can observe that
the radio tail phenomenon was present in 4G [26], but it
is increasing in the 5G era. 5G suffers from a longer radio
tail phase than 4G when releasing the RRC connection from
RRC_CONNECTED and entering RRC_IDLE, which leads
to additional energy waste. Due to the high throughput of
5G, the radio tail accounts for up to 80% of the active time,
which is much higher than 4G when transmitting the same
data. Though the power consumption during radio tail is
less than that of data transmission, it still consumes up to
49.4% of the total radio energy. Our measurement of radio
tail shows that combined with the ratio of radio power
consumption (e.g., ~30% shown in Figure 2), the power
waste of radio tail is about 12%-20% of the total power
consumption of the smartphone. Depending on the settings
of different operators and the usage habits of different
users, the proportion of radio tail’'s power waste varies.
These proportions will further increase when the amount
of transmission data decreases.

Though this evaluation was conducted on 5G SA net-
works, the conclusions still hold even on the 5G NSA net-
works. Because though the long-tail phase has existed since
the 4G era [26], due to the 5G NSA architecture, to complete
the switchover from RRC_CONNECTED to RRC_IDLE, the
5G module must first experience the 4G state machine
via LTE RRC reconfiguration. This process is equivalent
to activating the LTE tail again, increasing the tail energy
overhead. Therefore, how eliminating the radio tail of 5G
NR is a critical problem in smartphone energy optimization.

Implication: Massive power waste of NR attributes to the radio
tails which have greater impacts on power consumption than LTE.

3.5 How Do Traffic Patterns Affect Existing Tail Cutting
Approaches?

Existing tail cutting approaches mostly identify EOC events
and invoke fast dormancy to enter the idle state if an EOC
event is detected [12], [13]. However, if a packet arrives just
after the EOC event, the UE needs to immediately wake
up the radio, thus introducing extra state transition delays
and energy consumption. Therefore, these approaches only
work well in Apps with aggregated data transfer. In prac-
tice, however, most mobile Apps have flattened distribu-
tions of time intervals between EOC events and the next
network communications. To validate this phenomenon, we
extract the distribution of the next packet arrival times after
EOC events during normal uses of Apps. In the evaluation,
we used these Apps according to our daily habits. In these
applications, we consider an EOC event to occur when there
is no packet transmission in the next 1 second. Figure 4
shows the CDF of the next packet arrival times for three
typical Apps. As seen, the time intervals span a large range
of values. No matter what interval value is chosen for an
EOC event, new network communications are likely to start
soon. Furthermore, the investigation results of 15 popular
mobile Apps show that a large proportion (up to 72.28%) of
EOC events will be followed by soon coming data transmis-
sions (shown in Table 2). These results indicate that existing
tail cutting approaches cannot work well in modern mobile

Apps.

5

TABLE 1: Parameters of 5G NR radio states and transitions
in an HTTP download application.

Transition/State Power (mW) | Duration (s)
IDLE to CONNECTED 400.5 1.2
INACTIVE to CONNECTED 161.5 0.2
Default tail 292.5 16
CONNECTED state 1026.4 /
IDLE state 112.5 /
INACTIVE state 182.5 /

Implication: Efficient enerqy consumption approaches must be
able to respond to new network communications that may arrive
right after EOC events.

3.6 When Is the Inactive State More Efficient Than the
Idle State?

To obtain the radio characteristics of NR, we run an HTTP
download application on the smartphone. Refer to [7], [10],
[27], we use a network-based approach to derive the param-
eters of RRC states and transitions for 5G NR. Specifically,
we deliberately control whether to download files and the
interval between two download tasks. By measuring the
RTTs and energy levels for different download intervals, we
can identify different states and transitions, and calculate
the timers of these transitions. We have repeated the ex-
periments 10 times to eliminate the impact of measurement
noise. Table 1 shows the average power consumption and
communication delays of different radio states and transi-
tions. We observe that UE in the inactive state consumes
slightly higher energy than in the idle state, which means
the UE should enter the idle state if it has no data trans-
mission for a long time. However, it consumes much less
energy when resuming the RRC connection from the inac-
tive state. The state promotion power of the inactive state
is less than half of that of the idle state. More importantly,
the INACTIVE-CONNECTED state promotion time is only
one-sixth of the IDLE-CONNECTED state promotion time.
Therefore, when an application requires short-term sleep, it
will be more efficient to enter the inactive state rather than
the idle state.

Implication: For modern mobile applications that experience
frequent short-term sleep (shown in Section 3.5), the inactive state
has great potential for reducing their communication delays and
energy consumption.

4 SYSTEM DESIGN

The objective of 5GSaver is to identify EOC events and
predict the arrival time of the next packet for a specified
application. The main benefit of 5GSaver comes from using
the RRC_INACTIVE state of 5G NR, so it is important to
accurately predict the EOC events for different applica-
tions and guide 5GSaver to enter the RRC_INACTIVE state.
To this end, 5GSaver has been designed with a number
of refinements to predict application-specific EOC events.
Based on these results, 5GSaver can determine 1) whether
to leave the RRC_CONNECTED state (Section 4.3), and 2)
whether to enter the RRC_IDLE state or RRC_INACTIVE
state (Section 4.4).

Authorized licensed use limited to: Zhejiang University. Downloaded on June 10,2024 at 12:15:48 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3377696

IEEE TRANSACTIONS ON MOBILE COMPUTING
4.1 Definition & Notations

As shown in Figure 6, in 5GSaver, we define a data item that
contains the features over a predefined period as the basic
training and recognition unit. We define the period between
any two consecutive packets as a segment. We define a
network session as a time period over which the application
sends or receives packets such that any two consecutive
packets have a small inter-packet time (less than 1 second
in our analysis). We use a period ¢, to indicate when the UE
needs to release the RRC connection, i.e., triggering an EOC
event. There will be energy savings compared to a scenario
where the radio remains on between the two sessions. Since
NR supports the efficient RRC_INACTIVE state, we set an
additional threshold of ¢, in 5GSaver to distinguish whether
the UE should enter the inactive state or the idle state.
Specifically, if the next packet arrives between ¢, and ¢/, the
UE should enter the inactive state to suspend the RRC con-
nection for later fast recovery. If the next packet arrives after
t’., the UE will entirely enter the RRC_IDLE state. Detailed
settings of ¢ and ¢/, will be illustrated in Section 5.1. We use
tseg to denote the duration of an arbitrary segment. Then we
will extract data items. The time period is ¢4 (tq < t,) seconds
from these segments as the basic data unit here. Note that
tq can vary across applications since different applications
have different traffic patterns. We empirically select an
appropriate tq for a specific application. Detailed energy-
saving performance with different data item windows will
be evaluated in Section 5.3.

We define an ACTIVE data item based on the presence of
packet transmission. Otherwise, we will label the data item
as an EOC data item. As shown in Figure 6, the extraction
of data items can be divided into the following three cases.

Case 1: t5cq < tgq. The duration of a large number of
segments is very short due to the frequent packet trans-
mission during data communication. In 5GSaver, we use
data items rather than packets (i.e., segments) to make
a tradeoff between computation overhead and accuracy.
Besides, the use of data items can mitigate the inconsistency
of inaccurate timestamps among packet traces and other
related feature traces collected by smartphones. In this case,
we concatenate as many such short consecutive segments as
needed to extract one ACTIVE data item.

Case 2: tg < tseq < ts.If the duration of a segment is be-
tween t4 and t,, we will extract an ACTIVE data item whose
time period is from the observed packet up to t; seconds.
We truncate every data item to ¢4 seconds in length because
we want to restrict our learning to features that lie within a
short time of observing a packet. This truncation ensures
that we can extract features close to packet transmission
events.

Case 3: t,oq > t,. If the duration of a segment is larger
than ¢, we will extract an EOC data item whose time period
is from the observed packet up to t; seconds. Without the
truncation, 5GSaver may learn rules for EOC events using
features over a long time period after observing a packet.
Such rules will be matched long after the actual EOC event,
thus increasing unnecessary radio on time.

For the task of predicting the arrival time of the next
packet, we have further calculated the duration from the
end of each EOC data item to the beginning of the next data

6

item. For all EOC data items, we further divide them into
two cases based on their durations.

Case 4: t; < tseq < to. If the duration after an EOC
data item is between ¢; and ¢}, the UE is supposed to be
in the INACTIVE state. The communication will be fast
recovered and the EOC data item will be labeled as EOC-
FR. The identification of EOC-FR data items is important
for enabling a rapid bridge for the reversion.

Case 5: tgy, > t.. When the duration is larger than
t’, we consider that the application really ends its data
transmission and should convert to the idle state. We will
create an EOC-IDLE data item for this case.

4.2 Extracted Features

We develop a feature extraction module to collect
application-related data at a sampling rate of 500Hz in the
background and extract the following features in each data
item.

System function call. Internal system function calls are
invoked by an App in response to its logic and data. We use
STRACE with the process ID to collect system call traces of
the specified App. Similar to [12], we use binary to represent
whether a certain system call existed or not. For each system
call, we use 1 to indicate it is invoked in the current data
item, and 0 otherwise. The number and types of used system
calls are different in different Apps.

Packet information. We extract the length of the packet
and inter-arrival time between adjacent packets in each data
item. In particular, for case 1, we extract the packet infor-
mation of the last packet in the data item. We first use TCP-
DUMP to dump all network packets ! and use NETSTAT to
periodically get the port numbers opened by the App. Then
we filter the packets using these port numbers. It is worth
pointing out that in the subsequent energy consumption
measurements, we measured the energy consumption when
using TCPDUMP and NETSTAT to grab information sepa-
rately from the energy consumption when not using them
to grab information, and subtracted the two to exclude the
effect of TCPDUMP and NETSTAT (considering the large
amount of I/O and computation that sampling may trigger)
on the energy consumption measurements.

Application resource usage. Application data transmis-
sion will affect its resource usage. We use DUMPSYS to
record the memory and battery information and use TOP
to collect the CPU usage of the application. Then we extract
the resource usage close to the end of each data item.

Log information. Smartphones will expose all applica-
tion logs. Although there exist developer-dependent logs,
some native system logs may be closely related to the
application usage that reflects the start and end of commu-
nications. We use LOGCAT and the process ID to get the
number of logs and the priority of the last log in each data
item.

Previous data item state. As there are temporal corre-
lations between consecutive data items, we also record the
actual state of the previous data item (1 represents ACTIVE
and 0 represents EOC) for learning temporal rules.

In summary, for each data item, we collect features in-
cluding a variable number of system function calls, 2 packet

1. TCPDUMP does not support filtering packets by process ID

Authorized licensed use limited to: Zhejiang University. Downloaded on June 10,2024 at 12:15:48 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3377696

IEEE TRANSACTIONS ON MOBILE COMPUTING

1
—
[\ O
%08 =0
g mu_l% % s 0
| =
206 o
1%
o | S w
5 S Z XY
) —Browser|| ’5 .
E 0.2+ —News © 0
Weibo <
0
0 0.2 0.4 0.6 0.8 1 EOC ACTIVE
False positive rate Identified

(a) ROC curve (b) Confusion matrix of the

Ume Browser Application

Fig. 7: EOC estimation results.

features, 11 battery features, 8 CPU features, 7 memory
features, 2 log features, and 1 previous state. The detailed
feature numbers of experimental Apps are shown in the
last column of Table 2. Though the above features are
highly correlated with packet arrivals and EOC events, we
still cannot use a mathematical model to characterize these
correlations. Therefore, we use learning-based approaches
in 5GSaver.

4.3 |EOC phase: Identifying EOC

5GSaver uses the RF classifier as its EOC estimation tool. We
select RF due to its capabilities of requiring low memory and
computation overhead during online estimation, modeling
complex relationships among multi-source app-related fea-
tures, and avoiding overfitting. An important advantage of
using RF is it naturally supports feature selection. As some
features may not have a strong correlation with the running
state of a specific application, it is better to filter out these
features during training. For example, log features will not
be selected to train the RF model of Ume Browser, which
has a relatively poor log quality.

The input to the RF classifier is data items whose labels
are ACTIVE and EOC. Note that the number of ACTIVE
data items is much more than that of EOC data items, mak-
ing the dataset significantly unbalanced. We undersample
the ACTIVE data items to eliminate the imbalance of sam-
ple sizes. Then we normalize all features to accelerate the
convergence of the RF model. We use 70% of data items and
their corresponding labels as the training set and the rest as
the test set. We perform a grid-based search on the training
set to automatically find the optimal hyperparameters with
a five-fold cross-validation strategy to maximize the clas-
sification accuracy. Specifically, we test the following key
parameters in RF for an application: decision tree number,
max features per tree, min samples leaf, max depth, and min
samples split. Finally, we use the tuned optimal parameters
to construct the final RF model, which can be applied to the
application of interest.

Figure 7 shows the EOC estimation results of three
typical applications, including Ume Browser [28], Tencent
News [29], and Sina Weibo [30]. Other mobile applications
have similar EOC estimation accuracy. For each application,
we have collected 120 data traces on each mobile phone,
each of which lasts 60 seconds. We collected a total of about
54.0 GB of traces from a total of 15 Apps. As shown in
columns 7 and 8 of Table 2, EOC events accounted for an

7

1 1]
o | 824% - fa
o =
2060 f o O
» A o
S04 § o
2 —Browser|| (5 O 0.76 0.74
= 0.2 —News @]

Weibo w
0
0 0.2 0.4 0.6 0.8 1 EOC-FR EOC-IDLE

False positive rate

(a) ROC curve

Identified

(b) Confusion matrix of the
Ume Browser Application

Fig. 8: Next packet arrival time prediction results.

average of about 15.37% of all traces, and EOC-FR events
accounted for an average of about 6.04% of all traces. In
Figure 7(a), we use the Receiver Operating Characteristic
(ROC) curve, which is the comparison of the true positive
rate and false positive rate as the criterion changes, to show
the classification results since it is not sensitive to sample
imbalance. The closer the ROC curve is to the upper left cor-
ner, the better the classification performance. We assess the
model’s performance with Area Under Curve (AUC), which
quantifies the area under the ROC curve. The AUC value of
each ROC curve is also shown in the figure. The closer the
AUC value is to 1, the better the classification performance.
We also show the confusion matrix of classification results
of the browser application in Figure 7(b). Results show that
5GSaver achieves an average AUC of 95.8% in Figure 7,
which means our EOC estimation approach can well capture
EOC events even for complex applications such as a mobile
browser. Note that this is also the accuracy for the UE to
determine whether to leave the active RRC state.

4.4 PPAT phase: Predicting Next Packet Arrival Time

As shown in Figure 6, after identifying that the current
data item should be labeled as EOC, 5GSaver will further
determine whether to enter the idle or inactive state based
on t/,. Instead of obtaining the absolute prediction value, we
only need to predict whether the arrival time of the next
packet will be larger than t/,. Hence, we turn the prediction
task into a binary classification problem that is relatively
easy to solve.

Many different machine learning methods can be used
to predict the arrival time of the next packet, but our
empirical study shows that the DF method exhibits the best
performance compared to other methods (such as SVM,
DNN, LSTM, etc.). This may be because the parameters
required by 5GSaver in order to save energy represent
the state of the mobile phone during operation, and the
correlation between the parameters is not as strong as some
other fields suitable for machine learning methods (such
as natural language processing), so the performance of
methods including LSTM, neural network, etc. is slightly
inferior to the DF method. In view of this, 5GSaver uses
DF [31] as the prediction model since it can achieve highly
competitive performance to deep neural networks, whereas
the performance is quite robust to hyper-parameter settings.
Therefore, DF is supposed to perform well with different
mobile applications. Similar to RF, DF also integrates a

Authorized licensed use limited to: Zhejiang University. Downloaded on June 10,2024 at 12:15:48 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3377696

IEEE TRANSACTIONS ON MOBILE COMPUTING

antime engine

for time ¢,

n \J
n -@
Next packet No communi-
arrival time > t/,.? cation for time t'
DRetrain yes

D DRetrain

Learning
engine

Mode

‘Applicatiol

Feature
extraction

Fig. 9: 5GSaver’s two-phase workflow.

feature selection module to remove irrelevant features and
reduce runtime overhead.

Figure 8 shows the next packet arrival prediction results
of the above three applications in the form of ROC and
confusion matrix. Other experimental mobile applications
listed in Table 2 have similar prediction accuracy. Results
show that for most applications, 5GSaver achieves AUCs
of more than 82%, which is also the accuracy for the UE
to determine whether to enter the idle state or the inactive
state. For the News application, we can observe that the
packet arrival prediction accuracy is relatively lower due to
its more diverse news content and more frequent user inter-
action. However, these prediction results can still provide
important guidance for subsequent energy savings.

4.5 5GSaver’s Workflow

The two-phase workflow of 5GSaver is shown in Figure 9.
During the training phase of 5GSaver, we continuously
extract application-related features described in Section 4.1.
Then the learning engine of 5GSaver will train the RF
classifier and DF prediction models, and feed them into the
runtime engine.

We have found that our offline learning engine has
a good turnaround time. For complex applications such
as Ume Browser, the RF classifier can usually be trained
within 0.21 seconds on a typical smartphone (Qualcomm
Snapdragon 855, 8G RAM) using 6,514 data items involving
78 features, which is sufficient to achieve a good EOC
identification accuracy (shown in Figure 7). The DF predic-
tion model can also be trained within 1.64 seconds due to
its relatively fast training speed compared to other deep
learning algorithms [31]. These short training times help
us implement an online learning engine that combines the
pre-trained offline training models with online learning
algorithms to capture dynamic application features.

During online learning, 5GSaver will continuously mon-
itor the misclassification and misprediction rates of the
trained RF and DF models using a sliding time window.
The learning engine will use the data items of the current
App instance to retrain the RF (or DF) model if the mis-
classification (or misprediction) rate exceeds a threshold,
which means the application’s traffic pattern has changed
significantly. Since traffic pattern usually changes due to
major version updates of the App or significant changes in
user habits, our online learning engine will not introduce
much retraining overhead. 5GSaver’s online learning model
also allows us to train with each App only once and then
generalize the prediction model to users with different us-
age habits. The online learning performance with different
traffic dynamics will be evaluated in Section 5.3. As a result,

8

the online learning engine can automatically update the RF
and DF models in case Apps change their behavior over
time.

At runtime, whenever an application sends or receives a
packet (Packet 1) after a long idle time, the runtime engine
resets the running state, forms a new data item, and starts
collecting related features in the data item. If the application
further sends or receives the next packet (Packet 2) within
the time of a data item t4, we identify that the current
period (from Packet 1 to Packet 2) is ACTIVE, and restart
collecting traces as part of the data item started by Packet 2.
On the other hand, if there is no network transmission for
the time window ¢4 since Packet 1, the runtime engine needs
to use the trained RF classifier and the currently extracted
data item to identify whether the application has reached
an EOC event. If the data item is identified as ACTIVE,
the UE will remain in the RRC_CONNECTED state. If the
data item indicates that an EOC event occurs, 5GSaver
needs to further use the DF model to predict whether the
application will restart a new communication soon. If so, the
UE should suspend the RRC connection and transit to the
RRC_INACTIVE state. Otherwise, the engine will use fast
dormancy to force the radio to enter the RRC_IDLE state.

To deal with incorrect classifications/predictions,
5GSaver also integrates a connected-inactive timer and an
inactive-idle timer to reduce the influence. These timers
make the UE will not stay in the connected and inactive
states if there is no more packet transmission. Specifically,
in the RRC_CONNECTED state, if the application does not
send or receive data for the inactive timer t,, the UE will
enter into the RRC_INACTIVE state. In the RRC_INACTIVE
state, if the application doesn’t send or receive data for the
idle timer ¢/, the UE will release the RRC connection and
transit to the RRC_IDLE state. Hence, compared to existing
idle timer-based energy-saving strategies, 5GSaver will not
significantly increase the energy consumption. In summary,
5GSaver can achieve energy savings by identifying whether
enter low energy consumption states and reduce the com-
munication delay by entering the RRC_INACTIVE state.

5GSaver can also be tailored to make it compatible with
traditional cellular networks (e.g.,, 4G LTE) without the
RRC_INACTIVE state. Specifically, for legacy cellular net-
works, 5GSaver will only use the EOC estimation module
to identify EOC events. If 5GSaver detects an EOC event,
it will enter the RRC_IDLE state. Otherwise, 5GSaver will
keep the radio on to wait for the coming network commu-
nications. Detailed performance of the tailored 5GSaver will
be evaluated in Section 5.

5 EVALUATION

In this section, we first present the implementation of
5GSaver. Then we show our evaluation results using trace-
driven experiments across 15 mobile applications.

5.1 Methodology

The feature extraction module is implemented as an An-
droid daemon. The learning engine and runtime engine are
implemented by Python in Termux, which supports running
Python scripts in Android.

Authorized licensed use limited to: Zhejiang University. Downloaded on June 10,2024 at 12:15:48 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3377696

IEEE TRANSACTIONS ON MOBILE COMPUTING 9
TABLE 2: Detailed information of the 15 experimental mobile applications.

Avg session| Avg inter- . Avg inter-data| # of # of # of EOC-FR| # of

App Type App tim%e/ s ses§ion time/s # of data items itEIEIgl time/s EOC | EOC-FR| /# of EOC features
Ume Browser [28] 2.9437 2.9610 6514 1.1996 968 443 45.76% 78
Tencent News [29] 4.0752 3.2055 7385 0.9975 784 329 41.96% 84
Information Sina Weibo [30] 3.0820 3.5580 3463 2.8508 817 181 22.15% 74
QQ Browser [32] 6.4939 4.0997 9014 0.4173 499 232 46.49% 90
Toutiao [33] 5.0955 2.9910 8205 0.4986 512 292 57.03% 85
Kwai [34] 5.4267 3.1718 10878 0.3386 625 407 65.12% 90
Video TikTok [35] 2.7338 2.8010 4803 1.0851 1006 449 44.63% 77
Bilibili [36] 2.9565 3.2758 5059 0.9958 924 269 29.11% 79
Xigua Video [37] 3.1536 3.3888 4369 1.1886 890 345 38.76% 74
Kuwo Music [38] 2.7318 2.9854 1820 2.7945 801 150 18.73% 83
Music Himalaya [39] 2.3493 2.6803 3468 1.5844 1128 349 30.94% 78
CloudMusic [40] 2.6825 3.5485 4017 1.2524 898 255 28.40% 76
QQ Music [41] 2.3327 4.5991 3260 1.6282 841 196 23.31% 81
Others Baidu Netdisk [42] 2.9595 3.2688 4252 1.2710 947 365 38.54% 89
Soul [43] 2.9019 2.7406 5330 0.8486 938 678 72.28% 86

Devices and Applications. Our experiment involves
three 5G phone models: ZTE Axon10 Pro (with Snapdragon
855, about US$150), OnePlus 9 5G (with Snapdragon 888,
about US$320), and Mi 10 (with Snapdragon 865, about
US$420). We selected these three mobile phones because
they cover different price ranges and different vendors to
exclude the impact of possible proprietary energy savings
solution implemented by the vendor and the hardware
performance differences. Like other 5G NR energy-related
researches [2], [10], [44], 5GSaver requires the root priv-
ilege of Android phones to enable the feature extraction
module on these phones. We select 15 Android applications
(Table 2) that are most downloaded in the ZTE Android
market to evaluate 5GSaver. The phones in the evaluation
used SIM cards provided by China’s two largest network
carriers, China Mobile and China Telecom. These two net-
work carriers may have their own configurations such as
RRC tail timers (usually 10-20s). Tests across diverse cellu-
lar networks help us more fully evaluate the performance
of 5GSaver and understand the 5G energy problem more
comprehensively. We recruit 3 volunteers and provide them
with phones installed with the 15 applications. In our evalu-
ation, each volunteer used the aforementioned three mobile
phones for the experiment. Each volunteer who participated
in the evaluation conducted evaluations on three mobile
phones for about 30 hours respectively. In the experiment,
each volunteer experimented with each application for 2
hours on each mobile phone. During their normal daily use,
our feature extraction module is running in the background.
These 2 hours of experimental data are sliced by us into
~120 traces where each trace lasts 60 seconds, during which
the users are interacting with the corresponding application.
Then, we remove traces with missing feature data (due to
the feature collection daemon was killed by mistake). Each
trace lasts 60 seconds, during which the users are interacting
with the corresponding application (we identify whether the
user is using an application based on whether it has data
transmission).

As the inactive timer ¢; and idle timer ¢/, are key param-
eters that dictate the behavior of 5GSaver and associated
gains, we adaptively set them for different Apps. For an
App, we set the idle timer t, to its average inter-session
time, which is larger than most session intervals and only
smaller than a few long session intervals due to the long-tail

App traffic patterns [12]. A session interval larger than ¢t
means the UE should enter the idle state for saving more
energy. Then we empirically set the inactive timer t,=at/,
(a € (0,1)) in 5GSaver, where « is App-dependent and is
fixed for a specific App. We will show the impact of different
a’s in Section 5.3. Using these settings, we can observe
that in all EOC events (indicate temporary suspensions of
communication), the proportion of EOC-FR events (will be
fast recovered) can be up to 72.3%, which means we must
consider the soon coming data transmissions for saving
energy in modern mobile Apps.

Metrics. We use two end-to-end metrics to evaluate
5GSaver: energy savings and communication delay. To
get the radio energy consumption of each App, we use
the breakdown method introduced in [2] to subtract the
fixed system and App energy consumption. Though user-
experienced delay may include multiple types of delays
(e.g., rendering delay, computation delay, etc.), we focus on
the radio-induced communication delay here. The commu-
nication delay mainly comes from the radio promotion time.
For each App, we use the transition duration listed in Table 1
to calculate its overall communication delay.

Comparison Approaches. We compare 5GSaver with
six baseline energy-saving approaches. (1) Commercial
timeout-based fast dormancy approach (Commercial). As
mentioned previously, commercial smartphone models typ-
ically invoke fast dormancy with a fixed short inactivity
timer, ranging from 3s to 5s. This approach can reduce
the energy consumed due to the radio tail and is widely
adopted by current devices [13]. We use a three-second in-
activity timer-based fast-dormancy strategy, which is widely
adopted by current smartphones and has been evaluated
to achieve a good tradeoff between energy savings and
signaling overhead in [12]. (2) RadioJockey [12]. RadioJockey
uses a C5.0 decision tree classifier to identify the EOC events
and invokes fast dormancy if an EOC event is detected. (3)
SmartCut [17]. SmartCut uses an ARMA model to estimate
packet intervals to cut tails and take advance radio pro-
motion. (4) Top [13]. Top performs traffic predictions on 3G
networks and provides a tail removal API for applications
to leverage the fast dormancy feature. (5) 5GSaver-Tailored
(5GSaver-T). 5GSaver-T is the tailored version of 5GSaver
without considering the inactive state (introduced in Sec-
tion 4.5). (6) 5GSaver-OnePhase (5GSaver-O). 5GSaver-O is

Authorized licensed use limited to: Zhejiang University. Downloaded on June 10,2024 at 12:15:48 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3377696

IEEE TRANSACTIONS ON MOBILE COMPUTING

[= [] T @5 ~O W RadloJockey mSmartCut OTop ECommerclal |
D 24
=]
>
? 2
]
&
- 1.6
@
N
3 12
E
£
Sos
5@ I S-S R S SR SN ©
LT E TSI LE S
S 2 KA N &£
S & O &

Fig. 10: Energy savings comparison between 5GSaver and
baselines. 5GSaver performs best compared to baselines. All
volunteers used these Apps and each volunteer used each
App on each mobile phone for 2 hours according to their
daily habits.

[= [] -T @ -0 W RadioJockey HSmartCut OTop ECommercial |
1.2
>
o
8 11
°
g 1
]
E oo
o
z
0.8
IS E LT FE LSS O F
P P\ PEER R G & & N
S & e F &L & F e
RAPE ¢ P

Fig. 11: Communication delay comparison between 5GSaver
and baselines. The commercial approach has the minimum
delay since it trades significantly higher energy consump-
tion (shown in Figure 10) for delay reduction.

the one-phase classification version of 5GSaver and only
uses a DF model to identify whether the current data item is
ACTIVE, EOC, or EOC-FR. This approach is to demonstrate
the effectiveness of our two-phase design. In our evaluation,
we implement the RadioJockey [12], SmartCut [17], and
Top [13] to evaluate the performance of 5GSaver.

5.2 5GSaver’s Overall Performance

Figure 10 and Figure 11 show the normalized energy con-
sumption and communication delay of all evaluated Apps
for each approach, respectively. To better evaluate and
demonstrate the performance improvements of the 5GSaver,
all values are normalized to that of 5GSaver. In the eval-
uation, all volunteers used these Apps according to their
daily habits, and each volunteer used each App on each
mobile phone for 2 hours. We have the following seven
key observations: (1) Compared to the currently adopted
scheme, 5GSaver can save 24.0%-50.7% (38.4% on average)
of energy. (2) 5GSaver performs consistently better than
state-of-the-art energy optimization approaches. Compared
to RadioJockey and SmartCut, 5GSaver improves the energy
savings by 3.7%-21.5% (9.5% on average) and 18.2%-44.4%
(29.9% on average), respectively. This is mainly attributed to
the introduction of the RRC_INACTIVE state in 5GSaver. (3)
Even without the inactive state, 5GSaver-T performs slightly
better than RadioJockey since RF is more efficient than
C5.0 decision trees when learning EOC-related features.
Specifically, C5.0 decision trees are a single decision tree

10

algorithm, while Random Forests are an ensemble of deci-
sion trees. Random Forests often provide better performance
and generalization, especially when dealing with complex
and noisy datasets, but they are less interpretable compared
to individual decision trees. (4) Compared to 5GSaver-O,
5GSaver can significantly reduce energy consumption by
30.2% on average. We find this improvement is due to
the imbalance of training events (the number of ACTIVE
events is much higher than EOC events). The trained DF
model prefers to identify events as ACTIVE and leads to
higher energy consumption. (5) Though the performance
improvements for some Apps are modest, the performance
improvement of 5GSaver is significant for chatty Apps with
a high proportion of EOC-FR events. For example, for Apps
with a low proportion of EOC-FR events, e.g., Kuwo Music,
the reduced energy consumption is around 6.6% compared
to RadioJockey since the UE does not need frequent state
switching with continuous data transmission. On the other
hand, 5GSaver can reduce the energy consumption of Soul,
which is the experimental App with the highest proportion
of EOC-FR events, by 21.5% compared to RadioJockey. This
is because, for such chatty Apps with more intermittent data
transmissions, 5GSaver will guide UEs to enter the inactive
state and save promotion energy consumption when EOC-
FR events occur. As chatty Apps (e.g., instant messaging,
social networking, and online games) become more and
more popular in modern society [45], (6) The 5GSaver
consistently achieves better energy savings under different
operator networks. Different operators may have different
default timer values, which could affect the performance
of energy-saving mechanisms like 5GSaver. Therefore, to
exclude the influence of network configuration differences
between different operators (such as default timer values),
we evaluated the performance of 5GSaver separately using
network environments provided by two operators. The eval-
uation results of Figure 10 and Figure 11 are the average
values under 5G networks provided by two different opera-
tors. The evaluation results proved that there may be differ-
ences in the performance when using networks provided
by different operators, but 5GSaver remained effective.
This proves that different operators’ policies may slightly
impact 5GSaver’s performance, but the resulting effect is
not significant, and 5GSaver is consistently more energy
efficient on different operators’ networks. (7) 5GSaver has a
better energy-saving effect for both push-based applications
(e.g., Kwai) and pull-based applications (e.g., QQ Music)
than baseline approaches. In fact, 5GSaver’s PPAT is used
to predict the arrival time of the next packet, which can
predict both uplink and downlink packets. Not surprisingly,
for applications that run in the background and keep on
fetching data periodically (pull-based), 5GSaver will work.
For applications that are primarily push-based (e.g., Kwai,
Tiktok, Baidu Netdisk shown in Fig. 10 and Fig. 11), 5GSaver
still demonstrates better performance. This proves that for
both push-based and pull-based applications, 5GSaver can
save energy in terms of better generalization performance.
As shown in Figure 11, compared to RadioJockey and
SmartCut, 5GSaver can reduce the communication delay
by 12.4% and 4.7% on average, respectively. The reduced
delay of 5GSaver is mainly due to the faster promotion
time of the inactive state. Without the inactive state, the

Authorized licensed use limited to: Zhejiang University. Downloaded on June 10,2024 at 12:15:48 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3377696

IEEE TRANSACTIONS ON MOBILE COMPUTING

communication delay of 5GSaver-T is also comparable to
that of RadioJockey. We can observe that there is a gap
between the delay results of 5GSaver and Optimal. This
is because the next packet arrival time prediction results
are still modest. For applications with frequent EOC-FR
events (e.g., Ume Browser, Toutiao), 5GSaver may be eas-
ier to introduce UE into the inactive state by mistake. If
entering the wrong state, the UE needs extra time to return
to the correct state. It is promising to further improve the
delay performance by designing more accurate prediction
algorithms. We will further investigate other efficient deep
learning-based prediction models (e.g.,, DA-RNN [46]) in
our future work. This indicates that there are often new
network communications soon after EOC events. An inter-
esting observation is that SmartCut may have a relatively
lower delay for chatty applications (e.g., Kwai, Toutiao).
This is because SmartCut will make the UE more likely to
stay in the active state based on its estimated short packet
interval, which helps reduce the state promotion time at
the cost of higher energy consumption. This phenomenon is
further amplified in 5GSaver-O approaches. We can observe
that the communication delays of 5GSaver-O approaches are
much better than that of all learning-based energy-saving
approaches, especially for applications with frequent EOC-
FR events (e.g., Kwai, Toutiao, Soul). This is because these
approaches trade significantly higher energy consumption
for communication delay using long inactivity timers. For
data transmissions with short-term sleep, these approaches
will be likely to stay in the connected state while 5GSaver
enters the inactive state, which introduces extra, although
slight, inactive-connected promotion delays when recover-
ing communications.

5.3

We have extensively evaluated the impact of different fac-
tors on 5GSaver’s performance using all test applications.
Due to the page limit, we use an example application Ume
Browser to show the detailed evaluation results. The results
for other applications follow the same pattern.

Impact Factors

5.3.1 Data Item Window

Next, we focus on our choice of data item window t4 in
5GSaver. We vary t; during the feature extraction process.
Figure 12 plots the energy savings of 5GSaver and other
existing approaches with different data item windows of
Ume Browser. In Figure 12, all curves are normalized to
that of the commercially adopted approach.We found that
when the data item is small, the energy savings of 5GSaver
increase monotonically as the data item window increases.
When the data item window approaches the inflection point
(i.e., t4=0.3s), the energy savings of 5GSaver is minimized.
After passing the inflection point, the energy savings lin-
early decrease as the data item window further increases.
This is because when the data item window is small, there
will be too little data in a data item for 5GSaver to train good
learning models and make accurate predictions, leading
to lower energy savings. Beyond the inflection point, the
learning results are accurate enough, and thus the energy
savings become a linear function of how long 5GSaver must
wait to make an estimation/prediction. This waiting time is

11

necessary for feature extraction and is exactly equal to the
data item window. We also find RadioJockey works well at
low data item windows since its simple C5.0 decision tree
can already be trained with these data. However, its energy
savings are still higher than 5GSaver.

We have also shown the normalized communication
delays of 5GSaver with different data item windows in
Figure 13 and these curves show an opposite trend to the
energy-saving curves.However, the additionally introduced
communication delay of 5GSaver is consistently much less
than RadioJockey. Compared to RadioJockey, 5GSaver can
decrease more than 12.2% of communication delays.

The inflection point is relatively stable for a specific App
based on experiments across different network conditions.
On the other hand, the energy savings and delay reduction
of other mobile Apps follow the same pattern as in Figure 12
and Figure 13. However, different Apps can have different
inflection points due to their unique traffic patterns. There-
fore, 5GSaver will first identify the inflection point for each
App. Our empirical research shows that although different
users have different behaviors when using the same applica-
tion, the traffic characteristics of the applications are similar
when viewed in milliseconds. So, once the inflection point
of an App has been learned, it can be used by all other users.

532

As mentioned in Section 5.1, 5GSaver uses « to control
the inactive timer ¢, for an application with a specific idle
timer ., where t,=at). Figure 14 shows the total energy
consumption and communication delay of 5GSaver with
different o when running the Ume browser application for
a total of 60 seconds. We can see that a larger «, which
means a larger inactive timer, will lead to higher energy
consumption and lower communication delay. This is be-
cause a large inactive timer will lead the UE to enter the
inactive state in many cases that should have entered the
idle state, resulting in a significant delay reduction at the
cost of small extra energy consumption. Taking a tradeoff
between energy consumption and communication delay, we
set « = 0.3 for Ume Browser. It is worth pointing out
that the curves of energy and delay with o may vary from
application to application due to the traffic characteristics
of the application, but the overall trend is similar to that of
Ume Browser. « is also stable for a specific application and
only needs to be learned once.

Inactive Timer

5.3.3 Traffic Dynamics

5GSaver integrates an online learning strategy to adapt to
traffic dynamics that are introduced by different user behav-
iors. We deliberately imitate four different traffic dynamics
(low workload and bursty, high workload and bursty (in-
stantaneous packet rate > 1000 packets/s), high workload
and no bursty, high workload (average packet rate > 500
packets/s) and no bursty) to access the content shown
in the browser. Figure 15 shows the normalized 5GSaver
performance with different traffic dynamics. In the figure,
the situation where the 5GSaver energy saving algorithm is
not used to save energy is normalized to 1. We can observe
that both the energy savings and delays have been reduced
by up to 20.8% and 17.9% with online learning, respectively

Authorized licensed use limited to: Zhejiang University. Downloaded on June 10,2024 at 12:15:48 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3377696

IEEE TRANSACTIONS ON MOBILE COMPUTING

12

5
[[Fo=scsaver

RadioJockey T

RadioJockey —¥—5GSaver T —#—Commercial 1

IS

Normalized energy use
o o o
I e e
Normalized delay
N w

i

&'

0.1 0.3 0.5 0.7 0.9 11
Data item window (s)

o
o

0.3 0.5

Fig. 12: Energy savings with different
data item window.

°

°
-
o

B I 5Gsaver
3 @ I Radiojockey
2049 209 20.9
) 3 3
2038 o8 50.8
o g 5
go.7 T0.7 50.7
5 £ 8
Eop Z06 0.6
s £
= 50.5
05 3 \oo \a \oo" 05 > ey S
{xodode‘oe‘ {xO-c\o 0‘006“\ 0.4
e“\x\é‘%’ Sl @:: e &q{;‘\, :: ®q§, o PP GrouP meUPA pgmuv p(-,‘ou\? GrouP
Fig. 15: 5GSaver perfor- Fig. 16: Performance com-
mance with different traffic parison when running mul-
dynamics. tiple applications.

compared to the scenario without any power saving algo-
rithm. Among the four scenarios, the high-workload and
bursty scenarios perform slightly worse, because the EOC is
found to be less accurate under high-load scenarios. While
in other cases, for low workload scenarios, 5GSaver finds
EOC and saves energy well, while in high workload but no
bursty scenarios, the EOC discovery algorithm also works
well. This experiment validates the robustness of 5GSaver
across different traffic dynamic scenarios. Once 5GSaver has
been trained for a specific application by the application
provider, phone platform, or even individual users, it can
be shared with other users to reduce the application con-
sumption.

5.3.4 Multiple Applications

In practice, multiple applications may run simultaneously
on the phone and generate data traffic. We use the data
traces to simulate five sets of scenarios (Table 3) where
multiple applications are running simultaneously. Each set
of application combinations has been carefully selected to
ensure that each set of App combinations covers a different
type of Apps in Table 2, and all five App combinations cover
all participating App types in Table 2. To ensure the normal
operation of each App, we remain in the connected state
when any application is actively communicating. When all
applications are identified to meet EOC events, 5GSaver will
use the last data item of each application to predict the next
packet arrival time. If any App predicts that a packet will
arrive soon, we will enter the inactive state. Otherwise, we
will invoke fast dormancy to enter the idle state.

We compare the energy savings and delay reduction
between 5GSaver and RadioJockey, which invokes fast
dormancy when neither application is classified as ac-
tive [12]. Figure 16 shows a performance comparison be-
tween 5GSaver and RadioJockey when running multiple
Apps. In the figure, the situation where the 5GSaver and

Fig. 13: Communication delays with
different data item window.

0.7 0.9 11

Data item window (s)

Fig. 14: 5GSaver performance with dif-
ferent inactive timers.

TABLE 3: Detailed information of the 5 sets of multiple
applications scenarios.

App #of Applications
Group Apps
Group A 3 QQ Browser, Tencent News, Sina Weibo
Group B 3 Kwai, Kuwo Music, Himalaya
Group C 3 Soul, Baidu Netdisk, Xigua Video
Group D 5 Ume Browser, Tiktok, Toutiao, Bilibili,
Soul
Group E 5 Kuwo Music, Himalaya, Tencent News,
Baidu Netdisk, QQ Browser

RadioJockey algorithm is not used to save energy is nor-
malized to 1. Figure 16 shows 5GSaver saves an average of
9.8% more energy than RadioJockey in the scenario running
3 Apps, and 7.5% in the scenario running 5 Apps. This is
because the number of EOC events that require fast recovery
has increased due to the interleaving between applications.
When an application generates an EOC event, new network
communications of other applications can immediately start
to wake up the radio. In these scenarios, the inactive state
plays a more important role in saving energy and reducing
communication delays.

Besides, considering that the features used to predict
EOC events for different applications are generally similar,
there are some minor differences in the specific features
used to predict EOC events for different applications. There-
fore, we still utilize the strategy of learning and predicting
the EOC event features of different applications separately
when evaluating the energy saving effect when multiple
applications are running simultaneously. Our evaluation
shows that even with an application-agnostic holistic op-
timization (with the same learning techniques), 5GSaver
only decreases the energy savings by 2.1% compared to the
aforementioned per-app optimization. performance, which
is still better than RadioJockey. This may be due to the fact
that the events used to predict the EOC characteristics of
different applications are mostly similar, and thus 5GSaver
achieves better performance even with application-agnostic
holistic optimization.

5.3.5 Cross Applications

To evaluate the generalization performance of 5GSaver, we
perform leave-one-out cross-validation of 5GSaver in each
category of Apps (i.e., Information, Video, Music, and Oth-
ers) according to the types of the 15 Apps that participated
in the evaluation, and the evaluation results are shown in
Table 4. Our leave-one-out cross-validation is performed
within each category of Apps rather than on all 15 Apps. For
example, for the leave-one-out test results of Ume Browser

Authorized licensed use limited to: Zhejiang University. Downloaded on June 10,2024 at 12:15:48 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3377696

IEEE TRANSACTIONS ON MOBILE COMPUTING

shown in Table 4, we first train the model on the other
four Information Apps (i.e., Tencent News, Sina Weibo, QQ
Browser, and Toutiao) and test it on Ume Browser. We adopt
such a leave-one-out cross-validation approach because,
among the 15 Apps mentioned above, the traffic patterns
of Apps in different categories tend to have significantly
different characteristics. In contrast, the traffic patterns of
Apps in the same category tend to have similar character-
istics. For example, users of Tiktok and Kwai may like to
use it to watch live video streams or short videos, and thus,
Tiktok and Kwai may have continuous downlink packets for
downloading video streams in their traces. Whereas users
of Tencent News and Toutiao may prefer to use it to watch
news in text form, so the traces of Tencent News and Toutiao
may have EOC events for a few moments after the end of a
downlink packet (which may be because after the news that
the user is currently browsing has been downloaded, the
user needs to spend some time to read the news during this
time, the App will not have other downloading behaviors).
Therefore, the results of the leave-one-out test within similar
Apps can better reflect the generalization performance of
5GSaver, considering the significant differences in the traffic
characteristics of different categories of Apps.

According to Table 4, the prediction models trained for
each type of Apps have lower prediction accuracy than
those trained on a per-App basis in predicting the traffic
behavior of that class of Apps. This may be because the
prediction model trained for each App can better learn the
traffic characteristics specific to different Apps and thus
has better prediction results. In addition, the leave-one-out
cross-validation results for Video and Music Apps are rela-
tively better, possibly due to the higher similarity of traffic
features across Apps in Video and Music categories. In con-
trast, although some browsers (e.g., Ume Browser and QQ
Browser) and news Apps (e.g., Tencent News) are catego-
rized as Information Apps, they may be affected by different
users’” usage habits. Their traffic characteristics differ (e.g.,
users may still use browsers to download files). Therefore,
the leave-one-out cross-validation results for Information
Apps are relatively weak. In addition, the traffic behavior
of Others Apps is more different, so the results of Leave-
one-out cross-validation are poorer. Overall, our leave-one-
out cross-validation evaluation proves that 5GSaver has
better generalization performance, and there is still potential
room for improvement in model generalization and model
cross-domain in future research, which will also serve as a
direction for us to improve 5GSaver in the future.

5.4 5GSaver’s Overhead

We have evaluated 5GSaver’s overhead of feature extraction
and runtime learning on ZTE Axonl0 Pro when running
Apps in the background. We first only run the feature extrac-
tion module and measure its overhead. Then we measure
the cost of the learning engine and runtime engine in the
runtime learning module, respectively. We calculate their
cost by subtracting the cost of the feature extraction module
from the total cost. We analyzed the power consumption
data in the three smartphones in the previous evaluation.
Table 5 shows the average CPU utilization. Note that the
measured CPU utilization is relative to a single core. As all

13

TABLE 4: Prediction accuracy evaluation results for cross-
application of 5GSaver.

App Type App DF Accuracy | RF Accuracy
Ume Browser 70.13% 83.56%
Tencent News 58.39% 85.41%
Information Sina Weibo 71.94% 82.59%
QQ Browser 62.45% 81.92%
Toutiao 82.50% 83.69%
Kwai 85.81% 86.46%
Video Tiktok 82.14% 82.14%
Bilibili 87.21% 84.53%
Xigua Video 79.59% 80.93%
Kuwo Music 82.43% 83.34%
Music Himalaya 79.95% 81.02%
CloudMusic 86.18% 82.48%
QQ Music 81.97% 78.54%
Others Baidu Netdisk 61.57% 76.45%
Soul 73.54% 74.79%

TABLE 5: Average power, CPU utilization, and memory cost
of different modules of 5GSaver.

Module Power (mW) | CPU (%) | Memory (MB)
Feature extraction 26.3 1.50 57
Learning engine 269.4 2.54 8.9
Runtime engine 29.4 1.51 7.9

of the Snapdragon chips of different brand of the smart-
phone in our evaluation have eight cores, here we divide
the measured utilization by 8.

As seen, the total extra CPU consumption of feature
extraction and runtime engine is 3.01% and the total extra
memory consumption is 13.6MB, which is negligible for
commercial smartphones. We observe that the power con-
sumption for model learning is relatively higher. However,
despite the use of an online learning strategy, 5GSaver
will not introduce much additional cost for model training
because, as mentioned above, the model update will not
be frequent during online learning. Besides, as the runtime
learning module can also be migrated to high-performance
servers, its overhead can be further ignored. It is worth
pointing out that with such low resource consumption,
5GSaver reduces communication latency by 12.4% and radio
energy consumption by 9.5% compared to RadioJockey. The
model used for prediction in 5GSaver is lightweight and
can be run on mobile phones with lower overhead and
negligible latency. the pre-trained model size of 5GSaver
ranged from 3.7MB to 20.8MB depending on the parameter
settings. Due to the use of lightweight learning models,
5GSaver’s CPU and memory overheads are acceptable for
common smartphones.

We have also evaluated the extra energy consumption
of our energy monitoring App. Our evaluation shows that
the power cost of the monitor module is around 28.3 mW,
which is negligible on the 5G phone. By attaching a battery
tester externally to the cellular device, we measure the
overhead energy incurred when our monitoring App runs
on the cellular phone. We first test the energy overhead
on the cell phone when the measurement module is not
running. Then, we test the cell phone energy overhead when
the measurement module is running, controlling all other
variables to remain constant between the two evaluations.
The difference between the two energy overheads is used to
calculate the overhead of our monitoring App. We prefer the

Authorized licensed use limited to: Zhejiang University. Downloaded on June 10,2024 at 12:15:48 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3377696

IEEE TRANSACTIONS ON MOBILE COMPUTING

software-based energy consumption measurement method
in 5GSaver. This is because software-based measurements
not only measure the energy consumption overhead but
also allow for easy measurement of system application
layer information, which is impossible with hardware-based
measurements.

6 DiISCUSSION

In this section, we discuss some design choices, the general-
ization ability, limitations, and potential future directions of
5GSaver.

What is the in-field implementation method of
5GSaver? One caveat in 5GSaver is that although 5GSaver
does not need to modify the 5G infrastructure, it requires
the cooperation of operators to enable active RRC state
transitions. To the best of our knowledge, no commercial
smartphone provides a programming API for actively tran-
siting RRC states at the UE side. According to the most
recent version of RRC protocols [14], UE sides need the
cooperation of operators to establish, suspend, resume, and
release RRC connections. To obtain support from operators
for the widespread use of 5GSaver, more on-site verification
and more research on large-scale radio resource scheduling
within and between base stations are both needed. In our
future work, we plan to implement 5GSaver in 5G private
networks to evaluate the performance and scalability of
5GSaver further.

Why do we need a new online learning model for
5G energy saving? Existing methods in the 4G era [12],
[17] are inefficient in optimizing 5G energy because they
don’t consider the upcoming data transmission and the NR
RRC_INACTIVE state. Attempts can be made to modify the
existing methods to take advantage of the RRC_INACTIVE
state of 5G NR. However, existing methods lack the predic-
tion of future packets, and therefore, the existing techniques
may not facilitate a better choice of whether to enter the
RRC_IDLE state or the RRC_INACTIVE state. Moreover, ex-
isting works [12], [17] can not dynamically adapt to changes
in application traffic patterns. The online learning engine in
5GSaver is necessary to adapt to traffic dynamics introduced
by different user behaviors and can automatically update
the models if applications change their behavior over time.
These two key points allow 5GSaver to achieve better en-
ergy savings and communication delays than existing tail
optimization approaches. Therefore, though it’s possible to
modify the existing methods to take advantage of the newly
introduced RRC_INACTIVE state, compared to this, the new
learning mode adopted by 5GSaver is better adapted to the
variable traffic patterns of different applications in the real
world.

Why don’t we save energy better by understanding
the QoE needs of different Apps and applying earlier
state transitions when needed? Though 5GSaver focuses on
latency-sensitive interactive applications that require real-
time interactivity, for several applications (like email, What-
sApp, etc.), Quality of Experience (QoE) will not hampered
much if the message is being fetched after a few seconds.
Since considering QoE requirements for different applica-
tions is valuable, understanding QoE of Apps and making
early state transitions for Apps whose additional latency
due to state transition will affect the QoE can potentially

14

enhance performance. However, given the vast diversity of
mobile applications and the varying QoE requirements even
for the same application among different users, implement-
ing a comprehensive understanding of QoE for each ap-
plication becomes challenging. Furthermore, the associated
overhead in analyzing QoE requirements for diverse appli-
cations may outweigh the benefits. Therefore, 5GSaver aims
to provide a generalized energy-saving method applicable
to a broad spectrum of applications, ensuring practicality
and ease of extension to different use cases.

7 CONCLUSION

In cellular networks, a large proportion of battery energy
is wasted in the radio tail. In this paper, we conduct an
empirical energy consumption study and validate that the
radio tail phenomenon still exists in 5G cellular networks
and wastes a more significant amount of energy. To better
eliminate the radio tail phenomenon, we propose a two-
phase energy-saving approach 5GSaver that integrates the
inactive state of 5G NR. 5GSaver uses application-related
features to train an RF model for identifying EOC events
and train a DF model for predicting the next packet arrival
time. Based on the learning results, the UE can enter the
appropriate states for saving energy. Extensive trace-driven
experimental results on 15 mobile applications demonstrate
the effectiveness of 5GSaver in achieving better energy
savings and communication delays compared to existing tail
optimization approaches.

REFERENCES

[1] Statista, “Forecast 5G-enabled smartphone unit shipments world-
wide from 2019 to 2025,” Retrieved March 2021, 2020.

[2] D.Xu, A. Zhou, X. Zhang, G. Wang, X. Liu, C. An, Y. Shi, L. Liu,
and H. Ma, “Understanding Operational 5G: A First Measurement
Study on Its Coverage, Performance and Energy Consumption,”
in Proc. of ACM SIGCOMM, 2020.

[3] Michael Koziol, “5G’s Waveform Is a Battery Vampire,” Retrieved
March 2021, 2019.

[4] L Chih-Lin, S. Han, and S. Bian, “Energy-efficient 5g for a greener
future,” Nature Electronics, vol. 3, no. 4, pp. 182-184, 2020.

[5] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani,
“Energy consumption in mobile phones: a measurement study
and implications for network applications,” in Proc. of ACM SIG-
COMM, 2009, pp. 280-293.

[6] E Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck,
“Characterizing radio resource allocation for 3g networks,” in
Proc. of ACM SIGCOMM, 2010, pp. 137-150.

[7] J. Huang, E Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck,
“A close examination of performance and power characteristics of
4g lte networks,” in Proc. of MobiSys, 2012, pp. 225-238.

[8] Y. Cui, S. Xiao, X. Wang, Z. Lai, Z. Yang, M. Li, and H. Wang,
“Performance-aware energy optimization on mobile devices in
cellular network,” IEEE Trans. on Mobile Computing, vol. 16, no. 4,
pp. 10731089, 2016.

[9] G. discussion and decision notes, “UE “Fast Dormancy” behav-
ior,” R2-075251, 2007.

[10] A. Narayanan, X. Zhang, R. Zhu, A. Hassan, S. Jin, X. Zhu,
X. Zhang, D. Rybkin, Z. Yang, Z. M. Mao et al., “A variegated
look at 5g in the wild: performance, power, and qoe implications,”
in Proc. of ACM SIGCOMM, 2021, pp. 610-625.

[11] A. Khlass, D. Laselva, and R. Jarvela, “On the flexible and
performance-enhanced radio resource control for 5g nr networks,”
in VTC-Fall. 1EEE, 2019, pp. 1-6.

[12] P. K. Athivarapu, R. Bhagwan, S. Guha, V. Navda, R. Ramjee,
D. Arora, V. N. Padmanabhan, and G. Varghese, “Radiojockey:
mining program execution to optimize cellular radio usage,” in
Proc. of MobiCom, 2012, pp. 101-112.

[13] E Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck,
“Top: Tail optimization protocol for cellular radio resource alloca-
tion,” in Proc. of ICNP. 1IEEE, 2010, pp. 285-294.

Authorized licensed use limited to: Zhejiang University. Downloaded on June 10,2024 at 12:15:48 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3377696

IEEE TRANSACTIONS ON MOBILE COMPUTING

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]
[29]
[30]
(31]
(32]
[33]
[34]
(35]
[36]
[37]
(38]
(39]
[40]

[41]

3GPP, “TS 38.331 (version 16.2.0, Release 16): 5G; NR; Radio
Resource Control (RRC); Protocol specification,” 2020.

A. Khlass, D. Laselva, and R. Jarvela, “On the flexible and
performance-enhanced radio resource control for 5g nr networks,”
in 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall),
2019, pp. 1-6.

A. Khlass and D. Laselva, “Efficient handling of small data trans-
mission for rrc inactive ues in 5g networks,” in 2021 IEEE 93rd
Vehicular Technology Conference (VTC2021-Spring), 2021, pp. 1-7.
G. Xue, H. Zhu, Z. Hu, J. Yu, Y. Zhu, and G. Zhang, “Smartcut:
mitigating 3g radio tail effect on smartphones,” vol. 14, no. 1.
IEEE, 2015, pp. 169-179.

D. Zhang, Y. Zhang, Y. Zhou, and H. Liu, “Leveraging the tail
time for saving energy in cellular networks,” IEEE Trans. on Mobile
Computing, vol. 13, no. 7, pp. 1536-1549, 2013.

H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula, and D. Es-
trin, “A first look at traffic on smartphones,” in Proc. of ACM
SIGCOMM, 2010, pp. 281-287.

C.-C. Lee,].-H. Yeh, and J.-C. Chen, “Impact of inactivity timer on
energy consumption in wedma and cdma2000,” in Proc. of IEEE
WTS, 2004, pp. 15-24.

S. Deng and H. Balakrishnan, “Traffic-aware techniques to reduce
3g/lte wireless energy consumption,” in Proc. of CONEXT, 2012,
pp- 181-192.

A. Schulman, V. Navda, R. Ramjee, N. Spring, P. Deshpande,
C. Grunewald, K. Jain, and V. N. Padmanabhan, “Bartendr: a
practical approach to energy-aware cellular data scheduling,” in
Proc. of MobiCom, 2010, pp. 85-96.

S.Ryoo,]J. Jung, and R. Ahn, “Energy efficiency enhancement with
rrc connection control for 5g new rat,” in Proc. of WCNC. IEEE,
2018, pp. 1-6.

Y.-N. R. Li, M. Chen, J. Xu, L. Tian, and K. Huang, “Power saving
techniques for 5g and beyond,” IEEE Access, vol. 8, pp. 108 675
108 690, 2020.

A. Narayanan, E. Ramadan,]J. Carpenter, Q. Liu, Y. Liu, F. Qian,
and Z.-L. Zhang, “A first look at commercial 5g performance on
smartphones,” in Proc. of ACM WWW, New York, NY, USA, 2020,
pp- 894-905.

J. Huang, E Qian, A. Gerber, Z. M. Mao, S. Sen, and
O. Spatscheck, “A close examination of performance and
power characteristics of 4g lte networks,” in Proceedings of the
10th International Conference on Mobile Systems, Applications, and
Services, ser. MobiSys "12. New York, NY, USA: Association
for Computing Machinery, 2012, p. 225-238. [Online]. Available:
https://doi.org/10.1145/2307636.2307658

S. Rosen, H. Luo, Q. A. Chen, Z. M. Mao, J. Hui, A. Drake,
and K. Lau, “Discovering fine-grained rrc state dynamics and
performance impacts in cellular networks,” in Proc. of MobiCom,
2014, pp. 177-188.

Ume Browser, “Ume Technologies Co.,Ltd,” Retrieved March 2021
from https:/ /umeweb.com/, 2021.

Tencent News, “Tencent Technology Co.,Ltd,” Retrieved Feb 2021
from https:/ /news.qq.com/mobile/, 2021.

Sina Weibo, “Sina Corporation,” Retrieved Feb 2021 from
https:/ /weibo.com/, 2021.

Z.-H. Zhou and]. Feng, “Deep Forest: towards an alternative to
deep neural networks,” in IJCAI, 2017, pp. 3553-3559.

QQ browser, “Tencent Technology Co.,Ltd,” Retrieved March 2021
from https:/ /browser.qq.com/, 2021.
Toutiao, “ByteDance,” Retrieved
https:/ /app.toutiao.com/, 2021.

Kwai, “Beijing Kuaishou Technology Co., Ltd,” Retrieved March
2021 from https:/ /www.kwai.com/, 2021.

March 2021 from

TikTok, “ByteDance,” Retrieved = March 2021 from
https:/ /tiktok.com/, 2021.
Bilibili, “Bilibili Inc.” Retrieved March 2021 from

https:/ /app.bilibili.com/, 2021.

Xigua Video, “ByteDance,” Retrieved March 2021 from
https:/ /www.ixigua.com/app/, 2021.

Kuwo, “Beijing KuWo Technology Co., Ltd,” Retrieved March
2021 from http:/ /www.kuwo.cn/down, 2021.

Himalaya, “Shanghai Himalaya Technology Co., Ltd,” Retrieved
March 2021 from https:/ /www.ximalaya.com/, 2021.

NetEase CloudMusic, “NetEase, Inc.” Retrieved March 2021 from
https:/ /music.163.com/, 2021.
QQ Music, “Tencent, Inc.”
https://y.qq.com/, 2021.

Retrieved March 2021 from

[42]
[43]

[44]

[45]

[46]

15
Baidu Netdisk, “Baidu, Inc.” Retrieved March 2021 from
https:/ /pan.baidu.com/, 2021.
Soul, “Shanghai arbitrary door Technology Co., Ltd,” Retrieved
March 2021 from https:/ /www.soulapp.cn/, 2021.
Y. Li, C. Peng, Z. Yuan, J. Li, H. Deng, and T. Wang, “Mobilein-
sight: Extracting and analyzing cellular network information on
smartphones,” in Proc. of MobiCom, 2016, pp. 202-215.
M. Q. Khan, “Signaling storm problems in 3gpp mobile broadband
networks, causes and possible solutions: A review,” in Proc. of
iCCECE. IEEE, 2018, pp. 183-188.
Y. Qin, D. Song, H. Chen, W. Cheng, G. Jiang, and G. Cottrell,
“A dual-stage attention-based recurrent neural network for time
series prediction,” arXiv preprint arXiv:1704.02971, 2017.

Zhi Ding received the BS from Zhejiang Uni-
versity, China, in 2021. He is currently working
towards the master degree in the Zhejiang Uni-
versity, China. His research interests include 5G
networks, edge task scheduling and video QoE.

Yuxiang Lin received the BS from the Xidian
University, China, in 2016. He received the PhD
degree from Zhejiang University, China, in 2021.
He is currently working in Alibaba Group. His
research interests include 5G networks, mobile
sensing and ubiquitous computing.

Weifeng Xu received the BS from Zhejiang Uni-
versity of Technology, China, in 2022. He is cur-
rently working towards the Master degree in Zhe-
jiang University, China. His research interests
include 5G networks and knowledge distillation.

Jiamei Lv received the B.S. degree from the
College of Information Science and Engineering
at Ningbo University in 2018 and received the
Ph.D. degree from the College of Computer Sci-
ence at Zhejiang University in 2023. She is cur-
rently a researcher in School of Software Tech-
nology, Zhejiang University. Her research inter-
ests include the Internet of Things, blockchain,
and 5G networks.

Yi Gao received the BS and PhD degrees in
Zhejiang University in 2009 and 2014, respec-
tively. He is currently an associate professor in
Zhejiang University, China. From 2015 to 2016,
he visited McGill University as a visiting scholar.
His research interests include network measure-
ment, sensor networks and Internet of Things.
He is a member of the IEEE and the ACM.

Wei Dong received his BS and PhD degrees
from Zhejiang University in 2005 and 2011, re-
spectively. He is currently a full professor in the
College of Computer Science at Zhejiang Uni-
versity. He leads the Embedded and Networked
Systems (EmNets) lab in Zhejiang University. He
has published over 100 papers in prestigious
conferences and journals including MobiCom,
INFOCOM, ICNP and ToN, TMC, etc. His re-
search interests include Internet of Things and
sensor networks, wireless and mobile comput-

ing, and network measurement. He is a member of IEEE and ACM.

Authorized licensed use limited to: Zhejiang University. Downloaded on June 10,2024 at 12:15:48 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

