
1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3130036, IEEE
Transactions on Mobile Computing

1

AirText: One-Handed Text Entry in the Air for
COTS Smartwatches

Yi Gao, Member, IEEE, Siyu Zeng, Ji Zhao, Wenxin Liu, and Wei Dong, Member, IEEE

Abstract—Text entry for smartwatches is a useful service for many applications like sending text messages and replying emails.
Traditional touchscreen-based approaches are two-handed text entry methods, that could be cumbersome when the user is performing
other tasks with one hand. Therefore, we propose AirText, the first one-handed text entry method which achieves accurate and
practical handwriting in the air for commercial smartwatches. By analyzing the inertial readings from the smartwatch worn on the wrist,
AirText is able to accurately recognize the in-air handwritten characters. However, the wrist movements, which produce the inertial
readings, are harmful to the user to focus on the screen. In order to address this challenge, AirText uses a novel cross-modal
supervision design to achieve accurate character recognition from small wrist movements. AirText further includes a novel word
recommendation method to speed up the text entry. We implement AirText on five smartwatches and evaluate its performance
extensively with eight volunteers and more than 25,000 in-air handwritten characters. Results show that AirText outperforms two
baseline methods and achieves comparable text entry speed as two-handed approaches.

Index Terms—Text Entry, COTS Smartwatches, Cross-modal Supervision

F

1 INTRODUCTION

SMARTWATCHES are evolving from companion gadgets
to full-fledged devices with various applications [1],

[2], e.g., text messages, emails, fitness tracking, and social
networking. To enable more and more complicated applica-
tions, effective text entry technique for smartwatches plays
an important role.

There are many existing approaches focusing on this
smartwatch text entry problem, from both the industry
and academia. Touchscreen-based approaches [3], [4], [5],
[6], are dominant on both smartphones and smartwatches.
However, unlike text entry on smartphones, a user needs
to use both hands [7] to enter texts on smartwatches, which
could be cumbersome when the user is performing other
tasks with one hand, e.g., holding an umbrella or holding a
child. Speech input is a possible solution to this problem, but
it faces practical issues including the following: 1) it may be
socially inappropriate in some situations (e.g., at meetings);
2) the environment could be too noisy to support accurate
speech input; 3) it could cause privacy exposure.

Therefore, one-handed text entry for smartwatches has
attracted much research attention [8], [9], [10], [11], [12]
in the past several years. For example, WrisText [9] , Fin-
gerT9 [12] and AirDraw [10] are three typical text entry
methods for smartwatches. WrisText [9] and FingerT9 [12]
implement the keyboards on the smartwathes for the con-
venience of the users. However, these three approaches
require customized hardware or additional Bluetooth de-
vices. Different from these approaches, SHOW [8] is a recent
one-handed text entry technique for Commercial Off-The-

• Y. Gao, S. Zeng, W. Liu and W. Dong are with Zhejiang Univer-
sity and the Alibaba-Zhejiang University Joint Institute of Frontier
Technologies, Hangzhou 310027, China. E-mail: gaoyi, zengsy, liuwx,
dongw@zju.edu.cn. Wei Dong is the corresponding author.

• J. Zhao is with Shanghai Pudong Development Bank Co. ,Ltd. Shanghai
Branch, Shanghai, 200000, China. E-mail: zhaoj02@spdb.com.cn.

(c) rotating-wrist in the air(b) non-rotating-wrist in the air(a) on-surface

Fig. 1. Three one-handed text entry scenarios for smartwatches. From
the left to the right, they are (a) handwriting on a surface, (b) handwriting
in the air without rotating wrist, and (c) handwriting in the air with rotating
wrist. Since small movements of wrist can help the user focus on the
screen, the rotating-wrist scenario is preferred.

Shelf (COTS) smartwatches, without requiring hardware
modifications. In PhonePointPen [13], a user just needs to
hold a smartphone and writes in the air. Like SHOW [8],
the trajectory captured by the IMU of the smartphone is the
same as the trajectory of the written letter. LightRing [14]
designs a ring form factor sensor that consists of a infrared
proximity sensor and a 1-axis gyroscope to sense the 2d lo-
cation of a fingertip on any surface, which has the potential
to enable a variety of rich mobile input scenarios. However,
it requires the user to perform handwriting on a surface,
instead of handwriting in the air, with the forefinger. The
biggest difference between handwriting on a surface and
handwriting in the air is whether the wrist is allowed to
rotate.

Figure 1 shows three different scenarios, i.e., on-surface,
non-rotating-wrist in the air, and rotating-wrist in the air.
The left one shows handwriting on a surface. In this sce-
nario, the handwriting can be performed by moving the
forearm around, and the wrist moves with almost the same
trajectory as the fingertip, which is the trajectory of the
text. Then the written text can be directly inferred by using
machine learning algorithms on the IMU (inertial measure-

Authorized licensed use limited to: Zhejiang University. Downloaded on December 09,2021 at 07:05:09 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3130036, IEEE
Transactions on Mobile Computing

2

ment unit, including accelerometer and gyroscope) readings
obtained by the smartwatch on the wrist [8], [11]. How-
ever, since the movements of the forearm, the smartwatch
moves drastically with the handwriting, making the user
difficult to focus on the screen. Note that handwriting on
a surface can also be done by rotating the wrist, such as
the interactions shown in LightRing [14] and SHOW [8].
In LightRing [14] the wrist is allowed to rotate and the
smartwatch moves slightly with the handwriting, but a
wearable sensor in a ring form factor is required, which
can not be found on smartwatches. And in SHOW [8],
although the wrist is allowed to rotate since the elbow
is used as the support point, the smartwatch still moves
drastically with the handwriting, causing the user difficult
to constantly monitor the screen content. The middle one
shows handwriting in the air, but rotating wrist is not
allowed. Since the smartwatch still moves with a similar but
smaller trajectory as the fingertip, the written text can also
be easily inferred. However, in this scenario, the smartwatch
also moves drastically with the handwriting, causing the
user difficult to focus on the screen. Since a user needs
to constantly monitor the screen content to take necessary
actions (e.g., backspacing) during text input, the right case
is preferred, i.e., handwriting in the air and the wrist is
allowed to rotate and the smartwatch moves slightly with
the handwriting (in this case, the wrist is actually acting as
an axis of rotation).

In this paper, we propose AirText, the first one-handed
text entry method which achieves accurate and practical
handwriting in the air for COTS smartwatches. Using only
the IMU readings from the smartwatch on the wrist as input,
AirText infers the texts written by the fingertip in the air.
Since AirText allows the user to rotate her/his wrist when
handwriting in the air, the trajectories of the fingertip and
the wrist are significantly different. This becomes the major
challenge in the design of AirText, i.e., inferring texts written
in the air from IMU readings of a smartwatch that does not
follow similar trajectories as the fingertip. Figure 2 shows
the trajectories of a smartwatch under the three scenarios in
Figure 1. We can see that the trajectories of the on-surface
case and the non-rotating-wrist scenario are very similar as
the characters, while those of the rotating-wrist scenarios
are completely different.

In the design of AirText, we propose a deep neural
network to infer the trajectories of the fingertip for further
analysis. The problem of training such a neural network is
that there is no labeled data. It is infeasible to manually
label the accurate trajectories of the fingertip. To address this
problem, we use Leap Motion [15] to perform cross-modal
supervision. Leap Motion is a sensing device which is able
to track the skeletons of a hand (including the fingertip) us-
ing multiple active infrared sensors. Therefore, using Leap
Motion during training, we can extract the trajectories of the
fingertip as the supervisory signals for the IMU readings.
Then during the test period, AirText only needs the IMU
readings as input and does not require the Leap Motion
anymore.

In order to achieve accurate and practical text entry on
COTS smartwatches, AirText needs to further address the
following challenges. First, due to the complex relationships
between the movements of the wrist and the fingertip, the

 character

scenario
a A b B

on-surface
(non-rotating-

wrist)

on-surface
(rotating-

wrist)

in the air
(non-rotating-

wrist)

in the air
(rotating-

wrist)

Fig. 2. The trajectories of a smartwatch (recovered by Leap Motion) in
the three different scenarios shown in Figure 1, when writing four differ-
ent characters in the air. We can see that the trajectories in the rotating-
wrist scenario are completely different from the written characters. Re-
covering the fingertip trajectories from the IMU readings produced by
these small wrist movements is the major challenge of AirText.

inferred fingertip trajectories by cross-modal supervision
still include significant noises, causing misclassifications like
“D” to “P”. Second, smartwatches are resource-constrained
devices in terms of computations and memory. It is challeng-
ing to design a lightweight yet accurate text entry method
for smartwatches, especially with relatively high character
misclassification probabilities. Third, different users could
write the same character differently, and wear different
smartwatches with different IMUs. This poses difficulties for
the design of AirText, since it is not feasible to require each
user to train a neural network with Leap Motion. Therefore,
AirText should be able to achieve high accuracy for new
users as well as new smartwatches, without cross-modal
supervision using Leap Motion.

We address the above challenges with various tech-
niques and summarize our contributions as follows.
• We propose AirText, the first one-handed text entry ap-

proach which achieves accurate, efficient, and practical
handwriting in the air for COTS smartwatches.

• We propose a novel cross-modal supervision method
to infer the trajectories of the fingertip from small
movements of the wrist. Then the inferred trajectories
are classified into different characters in an efficient
and accurate manner by the smartwatch alone. We also
propose a fast word recommendation algorithm based
on a novel dynamic word score calculation method
to further improve the word-level input accuracy and
speed.

• We implemented AirText and evaluated its perfor-
mance extensively. Including training and testing, more
than 25,000 characters are in-air handwritten by eight
different users using five smartwatches. Results show
that AirText outperforms two baseline approaches and
achieves an in-air handwriting speed of 8.1 words per
minute using COTS smartwatches.

The rest of this paper is organized as follows. Section 2
reviews representative one-handed interaction approaches
with wearables. Section 3 gives the design considerations

Authorized licensed use limited to: Zhejiang University. Downloaded on December 09,2021 at 07:05:09 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3130036, IEEE
Transactions on Mobile Computing

3

and the overall architecture of AirText. Section 4 and Sec-
tion 5 describe the two major components of AirText, i.e.,
the character recognition component and the word recom-
mendation component. Section 6 gives the implementation
details of AirText. Section 7 evaluates the performance of
AirText extensively, and finally, Section 8 concludes the
paper.

2 RELATED WORK

Table 1 summarizes some representative related approaches
of AirText, including recent advances of touchscreen-based
approaches, on-handed gesture recognition systems, and
one-handed text input approaches. In this section, we focus
on the one-handed interaction techniques based on wear-
able devices, which are most closely related to AirText.

Gesture recognition. Using wearable devices, many ap-
proaches [16], [17], [18], [19], [20] focus on recognizing
gestures of the user. For example, WristFlex [20] is a typical
gesture recognition approach using an array of force sensi-
tive resistors worn around the wrist. It is able to distinguish
subtle finger pinch gestures, e.g., index pinch and middle
pinch. SignSpeaker [16] is a recent real-time sign language
recognition system using smartwatches, which is able to rec-
ognize more than 100 different sign gestures. ArmTrak [17]
exploits the physical constraints of the wrist, the elbow, and
the shoulder of a user, and achieves accurate 3D arm track-
ing and posture recognition with a smartwatch. Float [18]
enables touch-free target selection on smartwatches by two
gestures, i.e., wrist tilting to point and in-air finger tap to
click.

Different from these gesture recognition approaches, we
focus on one-handed text entry for COTS smartwatches
in this paper. Generally speaking, text entry and gesture
recognition techniques are suitable for different application
scenarios. In particular, a major difference of these two kinds
of techniques is that the gesture recognition system requires
the user and the application to agree on a certain predefined
“gesture language” in advance (e.g., push forward to rep-
resent single click). Handwriting-based text entry is able to
express more complex semantics, which is more suitable for
application scenarios like sending text messages.

One-handed text entry. Since handwriting is a natural
text entry method, there are already several one-handed
handwriting-based text entry approaches proposed in the
literature [8], [10], [11]. For example, SHOW [8] is recent
text entry approach for COTS smartwatches. A user can
perform handwriting on a surface using his/her fingertip,
then the movements of the smartwatch worn on the wrist
can be used for character classification. When the user
writes characters on a horizontal surface without elbow on
the surface, or on a vertical surface, the accuracy drops
significantly (54.1% to 71.3%). Similarly, AirDraw [10] also
provides on-surface text entry for smartwatches, with the
help of a smartphone for calculation. FingerWriting [11] uses
a Shimmer [21] IMU worn on the wrist and a smartphone
to conduct on-surface handwriting. As mentioned in the
introduction section, writing on a surface causes drastic
movements of the wrist, which is harmful for the user to
focus on the screen. Writing in the air with rotating wrist
is more challenging since the trajectories of the fingertip

and the wrist could be very different. Further, as writing
in the air does not require a nearby surface, it has broader
application scenarios.

There are also gesture-based text-entry approaches for
smartwatches [9], [22]. WrisText [9] is the state-of-the-art ap-
proach within this category. It uses a set of customized hard-
ware to support gesture-based text entry, which includes a
Ticwatch 2, 12 infrared proximity sensors, an Arduino DUE,
and a laptop for calculation. Based on the customized hard-
ware and a carefully designed keyboard, WrisText achieves
accurate and efficient text entry for smartwatches. Different
from these approaches, we focus on text entry for COTS
smartwatches, without any additional hardware support.

3 OVERVIEW

In this section, we will first give several important design
considerations of an accurate and practical one-handed text
entry method for smartwatches. Then we will describe the
overall architecture of AirText, including its main compo-
nents.

3.1 Design Considerations

Convenient to use. As a text entry method, it is desirable
to be convenient to use for novice users. Handwriting using
the fingertip is a natural text entry method for a user, almost
requiring no extra learning effort.

Cross-device and cross-user. For a practical text entry
method, it should not require a user to spend a long time for
training his/her own model for each smartwatch. In other
words, a trained model should be able to achieve similar
performance for a new user and/or a new device as for the
user and the device which provide the training set.

Screen stability. During text entry, a user needs to
constantly monitor the screen content to take necessary ac-
tions (e.g., backspacing, selecting word recommendations).
Therefore, it is crucial to keep the screen stable enough for
a user to enter text efficiently, especially for smartwatches
which suffer from limited screen sizes. As mentioned in
the introduction section, this is the major challenge for the
design of an in-air handwriting-based text entry method for
smartwatches. In AirText, a user can rotate his/her wrist
to handwrite a character in the air, without moving the
wrist along a similar trajectory as the written character. Due
to this screen stability design consideration, gesture-based
techniques are not suitable for text entry for smartwatches.

3.2 Overview Of AirText

As shown in Figure 3, the design of AirText consists of four
major components.

IMU Data

Pre-processing

IMU

Readings

Phase1 Fingertip

Trajectory Tracking

Phase2 Character

Classification

Phase1 Model Phase2 Model

Word

Recommendation

§ 5

Model Update

Phase1 Model

Training

§ 4.1

Phase2 Model

Training

§ 4.2

Fig. 3. Overview of AirText.

Authorized licensed use limited to: Zhejiang University. Downloaded on December 09,2021 at 07:05:09 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3130036, IEEE
Transactions on Mobile Computing

4

TABLE 1
Related work of AirText.

Method COTS Smartwatch Text Entry One-handed In-air Writing CER WPM

SHOW [8] Yes Yes Yes No 0.2%∼45.9% N/A(on-surface)

SignSpeaker [16] Yes No Yes N/A N/A N/A(sign language)

ArmTrak [17] Yes No Yes N/A N/A N/A(arm posture)

Float [18] Yes No Yes N/A N/A N/A(click gesture)

WristWhirl [19] No No Yes N/A N/A N/A(customized hardware) (gesture)

AirDraw [10] No Yes Yes No 29% N/A(additional smartphone) (on-surface)

WrisText [9] No Yes Yes Yes 5.92% 9.9(customized hardware)

WristFlex [20] No No Yes N/A N/A N/A(customized hardware) (pinch gesture)

FingerWriting [11] No Yes Yes No 5% N/A(additional smartphone) (on-surface)
ZoomBoard [6] Yes Yes No N/A 19.6% 9.8
SplitBoard [3] Yes Yes No N/A N/A 9.1

WatchWirter [5] Yes Yes No N/A N/A 15.3
SwipeBoard [4] Yes Yes No N/A 17.5% 24

AirText Yes Yes Yes Yes 5.8% 8.1

(1) Preprocessing of IMU readings. AirText takes the
IMU readings from the smartwatch worn on the wrist
of the user as input and preprocesses them for further
analysis. The first step is to detect each character, which
is accomplished by a threshold-based approach. Since the
acceleration variances are significantly different when a user
is handwriting a character or not, this simple solution is
effective enough for handwriting detection in practice. Then
for each detected character, AirText has obtained a number
of IMU readings. Due to different sampling frequency of
IMUs and different handwriting speeds, the number of IMU
readings for each character could be very different. There-
fore, AirText re-samples the IMU readings by interpolation
and gets a fixed number of IMU readings which are ready
for further character recognition. The detailed processing of
the IMU data after preprocessing will be described in the
next section.

(2) Phase1 of character recognition: fingertip trajectory
tracking. Since the trajectory of the fingertip directly reflects
the character, AirText includes a deep neural network to
infer the fingertip trajectory from the IMU data after pre-
processing. As mentioned in the introduction section, the
movements of the wrist and the fingertip are significantly
different. Nevertheless, AirText manages to use a cross-
modal supervision method to train a neural network model,
and achieve accurate fingertip trajectory tracking. We re-
fer to this process as phase1 training and phase1 character
recognition. During the phase1 training, AirText uses a Leap
Motion as supervisory signals to train the neural network
which is used to infer the fingertip trajectories from the
IMU data. AirText exploits the physical constraints of the
handwriting to improve the training accuracy. Further, a
stroke-cutting algorithm is used in AirText to remove the
interference of the extra stroke from the previous character
to the current character.

(3) Phase2 of character recognition: character classifi-
cation. After AirText has inferred the fingertip trajectory, it
conducts character classification by a second deep neural
network. This phase2 neural network takes the inferred
fingertip trajectory and the preprocessed IMU data as input,
then conducts character classification. In order to further
improve the classification accuracy, AirText uses the transfer
probabilities (i.e., a character is incorrectly recognized as
another) of different handwritten characters to fine-tune
the classification results. Since the IMU could drift over
time [23], and the user may change his/her handwriting
habits or smartwatches over time, or a new user comes to
use AirText, AirText will updates its phase2 model period-
ically. This model update is also beneficial for AirText to
improve its accuracy of different users as well as different
devices. Details are included in Section 4.2.

(4) Word recommendation. In order to improve the
word-level text input accuracy and speed up the text input,
the word recommendation component of AirText takes the
classified characters as input, then recommends several
possible words to the user. Considering various misspelling
possibilities, i.e., substitution, insertion, deletion, and trans-
position, AirText is able to successfully recommend the
intended word with high probability. Since the search space
of possible words could be very large, AirText also includes
an efficient and accurate design to select candidate words.
Details are described in Section 5.

4 CHARACTER RECOGNITION

4.1 Phase1: Fingertip Trajectory Tracking with
Physical-constrained Cross-Modal Supervision
In preprocessing, we use a threshold-based approach to split
the samples. A sliding window of 33 is acceptable while
meeting most people’s handwriting speed. After evaluating

Authorized licensed use limited to: Zhejiang University. Downloaded on December 09,2021 at 07:05:09 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3130036, IEEE
Transactions on Mobile Computing

5

the collected raw sensor data, the timestamp when the
standard deviation is larger than 0.2 is determined as the
start of a gesture, and less than 0.185 is determined as the
end of a gesture. The average length of the IMU sample of a
character is 120, which reaches the balance of accuracy and
inference time.

After preprocessing, the IMU data is analyzed by the
phase1 model to infer the fingertip trajectory. More specifi-
cally, each handwritten character includes 130×6 (130 sam-
ples, each sample is a row containing a timestamp and
three-axes readings measured by the accelerometer and the
gyroscope) preprocessed IMU readings. The output of the
phase1 model is the positions of three tracking points,
i.e., the index fingertip, the second metacarpophalangeal
joint, and the wrist shown in Figure 4. In the design of
AirText, the output dimension is 120×3×3, which are the
120 consecutive 3D positions (i.e., trajectory) inferred by the
phase1 model.

Fig. 4. The output of the phase1 model is the positions of the index
fingertip, the second metacarpophalangeal, and the wrist. The two
lengths for model calibration are also shown in the figure.

AirText uses a convolutional neural network (CNN) to
train the phase1 model. Figure 5 shows the neural network
architecture. The dimension of the input layer is 130×12,
which is obtained by duplicating the preprocessed IMU
data. The main reason of the duplication is to support more
layers without padding zeros which will add more noises.
Although the duplication does not add more information, it
makes the model easier to be trained with good accuracy.
We also conducted experiments with different settings: 1)
3-layer network without padding, 2) 5-layer network with
padding, 3) 7-layer network without padding. The results
show that the current model with duplication achieves the
best performance.

Then there are five CNN layers. Each of the first three
CNN layer uses 16 3×3 filters and the ReLU activation
functions. The fourth CNN layer include 8 3×3 filters and
the last CNN layer includes 3 3×2 filters to match the
output dimension. After flattening, a full connected layer,
and reshaping, the output dimension is 120×3×3, which
represents the 120 consecutive 3D positions of the three
tracking points, i.e., the index fingertip, the second metacar-
pophalangeal joint, and the wrist.

Since it is impossible to manually label the positions,
AirText uses a Leap Motion sensing device to provide the
supervisory signal. By using multiple active infrared sen-
sors, Leap Motion is able to accurately track the skeleton of
the hand with an error about 0.7mm on average [24]. We
denote the IMU data as I, the Leap Motion output as G, and
the phase1 network as T. Then the training objective is to

minimize the difference between the inferred positions T(I)
and the ground truth G obtained by the Leap Motion:

min
T

∑
(I,G)

L(T(I),G). (1)

The loss function L is almost the summation of squared
distances (i.e., D2(·)) of the inferred positions and the
ground truth positions for all 120 samples and the three
tracking points:

L(T,G) = c(lImcp, l
G
mcp)·c(lIif , lGif)·

120∑
i=1

3∑
j=1

D2(Tij ,Gij), (2)

where Tij and Gij are the positions of the i-th sample and
the j-th tracking point.

Note that there are two additional factors in the loss
function, c(lImcp, l

G
mcp) and c(lIif , l

G
if), where lImcp is the

metacarpal length calculated by the inferred positions, lGmcp
is the metacarpal length calculated by the Leap Motion
positions, lIif is the index finger length calculated by the
inferred positions, lGif is the index finger length calculated
by the Leap Motion positions.

The intuition of including these two factors is to cal-
ibrate the sensing errors by physical constraints. During
the handwriting, the length of the index finger and the
length of the metacarpal are two constants. However, due to
sensing errors, these two lengths calculated by the inferred
positions in each sample could be different. In the design of
AirText, we use a function c(·) to compensate these sensing
errors. Take lmcp as an example, when the difference of lImcp
and lGmcp is small, the compensation function will output a
small result, which will result in a small loss. This physical-
constraint-based loss function calibration can reduce the
loss values of samples with high sensing quality, effectively
improving the accuracy of the trained model.

Stroke-cutting. When a user is handwriting in the air,
the center of each written character keeps almost the same.
Therefore, the collected IMU data will include extra strokes
from the ending point of the previous character to the
starting point of the current character. The IMU data of
these extra strokes is harmful for AirText since the strokes
of the same character could be very different with different
previous characters.

We denote a cut matrix C, in which each element
Ccur,pre is the percentage of the IMU measurements in-
troduced by the extra stroke given the previous character
pre and the current character cur. The goal of the stroke-
cutting algorithm is to accurately calculating this matrix C.
In the design of AirText, the initial matrix is calculated by
analyzing the positions of the starting points and the ending
points of English characters from a dataset of handwritten
English characters. Since different users may have different
handwriting habits in the air, the initial matrix is updated
iteratively. More specifically, after AirText collects some
samples of each pair of a previous character (e.g., n) and
a current character (e.g., p), the stroke-cutting algorithm
will update the matrix C. First, the algorithm generates a
number of candidate values by increasing and decreasing
the current value C“p”,“n”. Then the AirText compares the
inference accuracy of using each candidate value and up-
date the value to be the one with the best accuracy. By

Authorized licensed use limited to: Zhejiang University. Downloaded on December 09,2021 at 07:05:09 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3130036, IEEE
Transactions on Mobile Computing

6

CNN Layer1

16 3x3 filters

CNN Layer2

16 3x3 filters

CNN Layer3

16 3x3 filters

CNN Layer4

8 3x3 filters

Flatten
Full Connection Layer

IMU Input

130x12

128x10x16 126x8x16 124x6x16 122x4x8

1080x1 1080x1

120x3x3

CNN Layer5

3 3x2 filters

Position Output

120x3x3

Fig. 5. The phase1 model architecture, including five CNN layers with ReLU activation functions and flattening, a full connection layer, and reshaping.
The output is the inferred 120 consecutive 3D positions of the three tracking points.

using this stroke-cutting algorithm, AirText is able to avoid
the interference of the extra strokes and achieves better
performance.

4.2 Phase 2: Character Classification with Fine-tuning
based on Transfer Probabilities

Preprocessed

IMU Readings

Fine-tuning

Phase2 Character

Classification

Phase2 Model

Tracked

Fingertip Trajectory

Transfer

Probabilities

Fine-tuned Character

Classification Results

Character

Classification Results

Fig. 6. Phase2 dataflow of character classification, mainly including a
CNN-based classification and a fine-tuning module.

Figure 6 shows the dataflow of phase2 character classifi-
cation of AirText. First, AirText uses a similar CNN with a
softmax layer at the last to classify different characters based
on the output trajectories of phase1.

The loss function L2 is the summation of the difference
between the Probability Output and labels of each character:

L2 =
26∑
i=1

(Ci − Pi) (3)

where Ci and Pi are the probabilities of the i-th letter of the
network output and the label.

Since the IMU could drift over time [23], and the user
may change his/her handwriting habits or smartwatches
over time, or a new user comes to use AirText. To rapidly
converge the model, AirText will send the collected IMU
samples and corresponding character labels to the cloud to
fine-tune the base phase2 model.

Second AirText includes a novel fine-tuning module to
further improve the character classification accuracy. The
key insight of this fine-tuning module is to exploit the
transfer probability matrix. With all the training data, we
can obtain a transfer probability matrix which includes all
probabilities of incorrectly recognizing a certain character
as another one. We denote each entry of this matrix as
P (α|β), which is the probability of recognizing character
β as another character α. Then we view the output softmax
score vector of the phase2 CNN as a measurement of the

probability of each character, which is denoted as ¯P (α). For
26 lower case characters, when the phase2 CNN outputs
the probability of a character “a” (i.e., ¯P (a)), there are 26
different cases, i.e., it could be correctly recognized by “a”
or incorrectly recognized by other 25 characters. Then we
have the following system of equations for 26 lower case
characters:

P (a)P (a|a) + P (b)P (a|b) + · · ·+ P (z)P (a|z) = ¯P (a),
P (a)P (b|a) + P (b)P (b|b) + · · ·+ P (z)P (b|z) = ¯P (b),
· · ·
P (a)P (z|a) + P (b)P (z|b) + · · ·+ P (z)P (z|z) = ¯P (z).

(4)
In this system of 26 equations, P (a), P (b), . . . , P (z) are

the 26 unknown probabilities which we want to estimate,
P (a|a), P (a|b), . . . , P (z|z) are 26×26 transfer probabilities
which are priori knowledge, and ¯P (a), ¯P (b), . . . , ¯P (z) are
the measured probabilities by the phase2 CNN. Therefore,
we have 26 equations for 26 unknowns. Due to measure-
ment errors, these equations are usually unsolvable. AirText
uses Gauss−Seidel method to calculate an optimal estima-
tion for each unknown probability P (α).

To summarize, this fine-tuning module takes the output
of the phase2 CNN (i.e., ¯P (α)) and the priori knowledge of
transfer probabilities (i.e., P (α|β)) as input, then outputs
a better estimation of the probability for each character
(i.e., P (α)). In the evaluation section, we will show the
effectiveness of this fine-tuning module.

5 WORD RECOMMENDATION

After the characters of a word have been recognized, Air-
Text further includes a word recommendation component to
increase the word-level accuracy and speed. Due to reasons
like incorrect character recognition and word misspelling,
the word recommendation component of AirText will rec-
ommend several most possible words to the user. In this
section, we will describe the details about how AirText finds
these most possible words.

We denote a word recognized by the character recogni-
tion component as W . Because there is no guarantee that
all the characters in W are correctly recognized, W might
not be the intended word that the user wants to enter.
We use Damerau-Levenshtein distance [25] between two
words to describe the dissimilarity between different words.

Authorized licensed use limited to: Zhejiang University. Downloaded on December 09,2021 at 07:05:09 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3130036, IEEE
Transactions on Mobile Computing

7

The Damerau-Levenshtein distance between two words is
defined as the minimum number of edit operations (sub-
stitutions, insertions, deletions, of a single character, or a
transposition of two adjacent characters) required to change
one word into another. Further, for candidate words with
the same distance from W , AirText will calculate a word
score S(W) for each candidate word and recommend those
with the highest scores.

5.1 Dynamic Word Score Calculation
Word recommendation is not new in the literature. The basic
idea of word recommendation is to use a frequency-based
statistical model [8], [26], [27], [28], i.e., a word with higher
frequency in a specific linguistic database has a higher word
score and will get recommended with a higher probability.
For example, since the word “top” has a higher frequency
than the word “toy” in the linguistic database, it will be
recommended with a higher probability when W=“tob”.
We refer to this approach as static-word-frequency-based
recommendation, i.e., the word frequency is a static value.

This approach is suitable for keyboard-based text entry
methods, but not suitable for AirText. The problem of using
this approach in AirText is that it overlooks how the user
has handwritten the word in the air. Concretely, when a
user uses AirText to input a character, the character recogni-
tion component will output a fine-tuned probability vector
(P (α)) of all characters in the alphabet, which in fact carries
the information about how the user has handwritten the
character in the word. In other words, if a user writes the
same character twice, the output probabilities vector could
be very different and the word score should be calculated
dynamically with considering these probabilities.

In the design of AirText, we propose a novel dynamic
word score calculation method. Since the most common edit
operation is substitution, we use one-character-substitution
as an example to describe the dynamic word score calcu-
lation process. Given a word W = C1C2 . . . CN , where N
is the length of the word, we denote Wn,β be the changed
word whose nth character is substituted by another char-
acter β. We define the word score S(W) of the word W as
follows.

S(W) = P (W) ·
N∏
i=1

Pi(Ci), (5)

where P (W) is the word frequency in the linguistic
database (the static part), and Pi(Ci) is the probability that a
character Ci is recognized in the ith position in the word W .
The Pi(Ci) is dynamic since it is the output of the character
recognition component, which could be different in each
time the user handwrites the character. In order to speed up
the lookup operations of word frequencies (P(W)), we use a
dictionary tree data structure to store the word frequencies.

Then we can calculate the word score for a changed word
Wn,β after substitution as follows.

S(Wn,β) = P (Wn,β) ·
N∏
i=1

Pi(C
′

i), C
′

i =

{
β, i = n;
Ci, i 6= n,

(6)

where C ′i represents a changed (i = n) or unchanged (i 6= n)
character at the ith position of the word W . The word score
of each candidate word obtained by other three operations

(1) Turn left (2) Turn right

(3) Turn down (4) Turn up
(a) (b)

Fig. 7. Four candidate words presented on the top, bottom, left and right
of the smartwatch screen, the user can use a small tilt gesture to select
the correct word.

TABLE 2
Details of the smartwatches.

Smartwatch Processors Battery RAM OS IMU

LG Watch

Urbane

1.2 GHz

Quad-Core

400 mAh 512 MB Wear OS

2.20

InvenSense

MPU-6515

Huawei Watch

2 Pro

1.1 Ghz

Quad-Core

420 mAh 768 MB Wear OS

2.0

InvenSense

ICM-20690

Ticwatch Pro 1.2 GHz

Quad-Core

415 mAh 512 MB Wear OS

2.7

InvenSense

MPU-6515

TicWatch 2 1.2 GHz

Quad-Core

300 mAh 512 MB Ticwear

OS 4.1

InvenSense

MPU-6515

and larger Damerau-Levenshtein distances can be calcu-
lated similarly. Given the word score for each candidate
word, AirText will recommend the top three words as well
as the original recognized word to the user. There are four
words are presented on the screen. The left word is the
input word of the user, and the other three words are the
recommended words given by the word recommendation
component. The user interface is shown in Figure 7(a).
The user can use a small tilt gesture to select the correct
word from the recommended words shown in Figure 7(b).
The user can use a “backspace” gesture by shaking the
smartwatch up and down once to delete the wrong char-
acters and retype the word if the “wrong” word appears.
Since the gesture “shaking” the smartwatch up and down
is significantly different from the gestures of hand-writing
normal characters in the air, the accuracy of this backspace
gesture is almost one hundred percent in the evaluation. But
the usage scenarios are in steady situations like sitting still.
Under other impacts, like walking, Airtext is not available
due to the noises from other irrelevant body movements.

6 IMPLEMENTATION

AirText is implemented on five COTS smartwatches with
four different models, including one LG Watch Urbane, two
Huawei Watch 2 Pro, one TicWatch Pro, and one TicWatch
2. Table 2 shows the details information about these smart-
watches. Note that the IMU InvenSense MPU-6515 is widely
used in many other popular smartwatches, e.g., LG G
Watch, Moto 360, Samsung Gear 2, and Gear Fit. AirText
includes a text entry service running on smartwatches, and a
cloud service running on a remote server for model update.

Authorized licensed use limited to: Zhejiang University. Downloaded on December 09,2021 at 07:05:09 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3130036, IEEE
Transactions on Mobile Computing

8

Smartwatch Side. AirText utilizes the built-in accelerom-
eter and gyroscope in smartwatches, and acquires the IMU
data through existing AndroidWear APIs. During the train-
ing period, we use a Leap Motion to collect the ground truth
of the fingertip trajectories, as shown in Figure 8. To avoid
the volunteers being influenced by the trajectories displayed
on the screen, the monitor is turned aside. All the volunteers
handwrote characters in a natural way they like. Using the
collected data, the two-phase models are implemented by
TensorFlow [29] and trained on an NVIDIA Tesla P100 (16
GB memory, Single-Precision Performance 9.3 teraFLOPS).
We use the TensorFlow Lite converter to convert the trained
TensorFlow models into an optimized FlatBuffer format, so
that they can be used by the TensorFlow Lite interpreter
which is supported on smartwatches.

Smartwatch

Leap Motion

Handwritten character

Fig. 8. The setup when using Leap Motion to train the phase1 CNN
model in AirText.

Cloud Service for Model Update. The cloud side service
of AirText is mainly used for model update. There are two
different cases of model update. First, when AirText is used
for a new user or a new device, the pre-installed CNN
models will be updated frequently to converge to stable
performance. Second, since a user may change his/her input
habits and the smartwatch IMU may drift over time [23], the
models should be updated periodically. In the evaluation
section, we will show the results of these two kinds of model
update.

Overhead. For the current implementation, the average
inference time duration of character classification is 202
ms, including 104 ms for phase1 and 98 ms for phase2,
with a standard deviation of 24.5 ms. The average energy
consumption of entering each character is about 0.1J. Given
the 400 mAh battery capacity and the 3.7 V working voltage,
when a user inputs 20 sentences (30 characters per sentence
on average) a day using the smartwatch, the total energy
consumption is smaller than 2% of the battery capacity.

7 EVALUATION

In this section, we evaluate the text input performance of
AirText extensively. We will first describe the evaluation
methodology, including the dataset, the metrics, and the
baselines for comparative study. Then we will give the
main evaluation results of AirText as well as two baselines.
We will also analyze the performance gain of each key
component of AirText in detail. Finally, we will evaluate the
robustness of AirText considering different impact factors.

TABLE 3
Distribution of the dataset.

 Training Testing

Phase1 User8 10,982 characters
(With device5)

2,746 characters
(With device5)

Phase2

User1~7 7 x 728 characters 7 x 312 characters

User8 5 x 728 characters
(With 5 devices)

5 x 312 characters
(With 5 devices)

User1~7 20 sentences

7.1 Evaluation Methodology

Dataset [30]. During the training data collection and test-
ing process, we didn’t require the volunteers to handwrite
characters in a fixed way, that is by rotating their wrists. In
contrast, all the volunteers handwrote characters in a natu-
ral way they like, AirText allowed volunteers to rotate their
fingers relative to their hands. Besides, they were required
to sit or stand still to maintain the stability of their bodies.
Other impacts like walking will produce too much noises to
classify the characters. So the training data contains various
IMU data corresponding to different handwriting habits,
and volunteers can handwrite naturally while testing. We
just recommend the volunteers to handwrite by rotating
their wrists, because this makes it easier for the volunteers to
focus on the screen, but they don’t have to keep handwriting
in that way.

Phase1. One of the volunteers (user8) performed in-air
handwriting of English words using LG Watch Urbane to
provide the dataset for phase1. A total number of 13,728
training and testing samples were collected, and each sam-
ple includes the Leap Motion data and the IMU data for one
handwritten character.

Phase2. All the eight volunteers performed in-air hand-
writing to provide the test set which includes a total number
of 12,480 (12×1040) test samples. Each sample also has
the Leap Motion data, but only for trajectory comparison
and extracting the information of the character such as
writing speed, size, environment, and time. Note that the
test sets provided by the user1 to user7 (7×1040) were
collected after the phase2 model was updated by the model
update component (evaluated in 7.3.2) for the user1 to user7
respectively, and the phase2 model needn’t to be updated
for the user8 because he is the original user. User8 also wrote
other 5×1040 samples for all five smartwatches mentioned
in Section 6, including one LG Watch Urbane, two Huawei
Watch 2 Pro, one TicWatch Pro, and one TicWatch 2. We
denote the dataset (8×1040) provided from all volunteers
with Huawei Watch 2 Pro 1 as the user set Suser, the dataset
(5×1040) provided from user8 with all five smartwatches
as the device set Sdevice. The words handwritten by the
volunteers are randomly selected from the Enron mobile
email dataset [31] which is widely used for testing mobile
text entry methods. In particular, 42 sentences are randomly
selected for performance evaluation of AirText.

Usually, the compass is used to calibrate IMU drifts.
During data collection, in order to keep the screen stable,
the movements of the wrist are small. And short writing
time makes the IMU drifts are not significant. Due to the
noises of the compass itself, the accuracy is decreased after
calibrating.

Authorized licensed use limited to: Zhejiang University. Downloaded on December 09,2021 at 07:05:09 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3130036, IEEE
Transactions on Mobile Computing

9

Metrics. In order to evaluate the text entry performance
of AirText, we use the word error rate (WER) as the major
performance metric. WER is a standard metric for evalu-
ating many text entry systems [32], which considers three
types of text entry errors, i.e., deletion error, insertion error,
and substitution error. WER is defined as follows:

WER =
D + I + S

D + C + S
, (7)

where I is the number of insertion error words, D is
the number of deletion error words, S is the number of
substitution error words, and C is the number of correctly
recognized words.

The character error rate (CER) is also an important metric
to measure the characters recognition performance, which
can be calculated by the ratio of incorrectly recognized
characters within all characters. According to WrisText [9]
and FingerT9 [12], the CER of below 10% is acceptable and
word recommendation will further decrease the WER.

The text entry speed is a metric to measure AirText’s
efficiency of entering text, which is defined as the number
of entered words per minute (WPM):

WPM =
Ntotal −Nwrong

T
(8)

where Ntotal is the number of the entered words, Nwrong
it the number of the words which are neither correctly
inputted nor recommended, and T is the time spent to enter
these words.

After writing a character, there is an average pause time
of 0.5s to display the inferred result on the watch screen. It
takes about 0.1s to detect the end of writing, and 0.3s for
two networks to infer the trajectories and the character. The
rest of 0.1s is for preprocessing, word recommendation, and
other calculations.

Baselines. Two baselines are used for comparative study,
the BLSTM model used in SignSpeaker [16] and the phase2
CNN model in AirText. SignSpeaker is recent state-of-the-
art work to use smartwatches to recognize sign gestures.
Its core component is a BLSTM model to use IMU data to
classify hand gestures. Although the application scenario of
SignSpeaker is different from AirText, the BLSTM compo-
nent in SignSpeaker can be used as a baseline to evaluate
the performance of the two-phase CNN model in AirText.
In fact, this BLSTM model is the state-of-the-art technique
to use IMU data for gesture classification. Therefore, we
implemented the BLSTM model and replaced the two-phase
CNN model with this BLSTM model to get the baseline
approach, which is referred to as BLSTM.

In addition to this BLSTM baseline, we also implemented
a variation of AirText as another baseline, which does not
include the phase1 model. The phase1 model is to use IMU
data to infer the fingertip trajectories based on cross-modal
supervision method. Without the phase1 model, the remain-
ing phase2 model is just a CNN model to classify characters
from IMU data. Therefore, we refer to this baseline as IMU-
CNN in the following.

7.2 Text Entry Accuracy and Speed: A Comparative
Study
In this section, we show the evaluation results of the com-
parative study of AirText and two baselines, in terms of both

accuracy and speed.
WER Comparison. We first evaluate the WER perfor-

mance when the training and testing are conducted by user8
with LG Watch Urbane, i.e., one-user one-device case. The
WER results of AirText and two baselines are shown in Fig-
ure 9. The average WERs of AirText, IMU-CNN and BLSTM
are 3.9%, 30.9% and 57.1%, respectively. The results show
that compared with the BLSTM model, directly using CNN
model (i.e., IMU-CNN) could achieve a higher accuracy.
However, without cross-modal supervision in the phase1
model of AirText, the phase2 CNN model alone cannot
achieve sufficiently high accuracy for text input in practice.
Note that Sentence index 14 and 37 have nearly zero devia-
tion due to the limitation of the word recommendation. The
words that have low frequency in the word dictionary will
hardly be ranked in the top.

We further evaluate the performance of AirText under
the multi-user (Suser) as well as the multi-device (Sdevice).

WER of different users and using different devices. We
then show the WER performance of AirText when different
users or different devices were involved in the training and
testing processes. These experiments are able to show the
ability of generalizing the model of AirText to different users
as well as different devices.

Figure 10(a) shows the results of one user with five
smartwatches. The average WERs of AirText on five smart-
watches are 8.3%, 7.5%, 6.5%, 7.7% and 3.9%, respectively.
As expected, the accuracy of one-user multi-device case is
lower than that in the one-user one-device case. A WER
about 7% means there is one incorrectly recognized word
in every 15 words on average, which we believe is still
acceptable for in-air handwriting.

Figure 10(b) shows the results of different users with the
same device. The average WERs of AirText of the eight users
are 11.2%, 5.9% 4.3%, 4.0%, 3.6% , 5.9%, 4.7% and 3.9%,
respectively. We can see that the different users have greater
impact on the accuracy compared with different devices.
Nevertheless, with the help of the model update component,
AirText can still achieve high accuracy for different users.
Next, we will show the text entry speed considering the
incorrectly recognized words during the test.

Text Entry Speed. The speed of text entry is an overall
metric to evaluate the performance of a text entry method.
Since the WER of the BLSTM baseline is about 57%, it is im-
practical to use such a text entry method. Therefore, we com-
pare the speed of AirText and IMU-CNN in terms of words
per minute (WPM). Figure 11 shows the results on Suser
and Sdevice. We can see that on average, AirText achieves a
WPM of 8.1, while the IMU-CNN baseline only has a WPM
of 4.6. Note that this input speed is comparable to some
two-handed touchscreen-based text entry approaches [4], [6]
which achieve 9.8 WPM and 9.1 WPM in practice. These
results also show that cross-modal supervision (i.e., the
component which the IMU-CNN baseline does not include)
significantly improves the performance of AirText.

7.3 Performance Gain Analysis

We then analyze the performance gain of the key compo-
nents in AirText.

Authorized licensed use limited to: Zhejiang University. Downloaded on December 09,2021 at 07:05:09 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3130036, IEEE
Transactions on Mobile Computing

10

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 4 0 4 1 4 2
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0
W

ER

S e n t e n c e I n d e x

 A i r t e x t
 I M U - C N N
 B L S T M

Fig. 9. WER comparison of AirText and two baselines for the 42 sentences. AirText achieves higher accuracy than two baselines for all sentences.

d e v i c e 1

d e v i c e 2

d e v i c e 3

d e v i c e 4

d e v i c e 5

0 . 0 0

0 . 0 2

0 . 0 4

0 . 0 6

0 . 0 8

0 . 1 0

W
ER

(a) one-user multi-devices

u s e r 1
u s e r 2

u s e r 3
u s e r 4

u s e r 5
u s e r 6

u s e r 7
u s e r 8

0 . 0 0

0 . 0 4

0 . 0 8

0 . 1 2

W
ER

(b) one-device multi-users

Fig. 10. WER of a user using different devices and different users using
the same device.

d e v i c e 1

d e v i c e 2

d e v i c e 3

d e v i c e 4

d e v i c e 5

0

2

4

6

8

1 0

Sp
ee

d
(W

PM
)

 A i r t e x t
 I M U - C N N

(a) one-user multi-devices

u s e r 1
u s e r 2

u s e r 3
u s e r 4

u s e r 5
u s e r 6

u s e r 7
u s e r 8

0

2

4

6

8

1 0

Sp
ee

d
(W

PM
)

 A i r t e x t
 I M U - C N N

(b) one-device multi-users

Fig. 11. WPM of AirText and IMU-CNN when a user using different
devices and different users using the same device. On overage, AirText
achieves 8.1 WPM.

7.3.1 Fingertip Trajectory Tracking
The first key component is the fingertip trajectory tracking
component based on cross-modal supervision. The accuracy
of the fingertip trajectory tracking can be measured as the
3D positioning difference compared with the Leap Motion
results. We selected four characters (“f”, “g”, “p”, “s”)
each 100 times from four users (user2, user4, user6, user8).
Figure 12 shows the results, including some example trajec-
tories, the CDF of the positioning errors, and the effect of
cutting the extra stroke. The median errors for handwriting
the four characters are 1.5cm, 1.5cm, 1.6cm, and 1.8cm,
respectively. Since the size of an in-air handwritten character
is usually about 12cm×12cm, the fingertip tracking is suffi-
ciently accurate to support accurate character recognition.
These results show that the extra strokes can be accurately
cut by the stroke-cutting algorithm.

7.3.2 Character Classification
Character classification performance can be measured by the
character error rate (CER).

With and without fingertip trajectory tracking. The CER
of AirText for all users with and without fingertip trajectory
tracking (i.e., the phase1 model) is shown in Figure 13. The
average CER of AirText is 5.8%, while the average CER is

AirText Fingertip Trajectory
Leap Motion Fingertip
Trajectory

(a) trajectory examples

0 2 4 6 8 10
Error (cm)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F f
g
p
s

(b) tracking error

(c) extra strokes

Fig. 12. Fingertip trajectories, the corresponding CDF of the tracking
error and extra strokes.

26.5% without fingertip trajectory tracking. The result shows
that the performance gain of the character classification
mainly comes from accurate fingertip trajectory tracking.

a b c d e f g h i j k l m n o p q r s t u v w x y z
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

C
ER

 w i t h p h a s e 1 m o d e l w i t h o u t p h a s e 1 m o d e l

Fig. 13. CER of AirText with and without fingertip trajectory tracking.
Transfer probabilities. Figure 14 shows the transfer

probabilities of the character classification of AirText. Suser
was used to calculate the transfer probabilities of 26 lower
case characters. We can see that all the 26 lower case
characters achieve high accuracy. In particular, these transfer
probabilities are very different from that of a tradition touch-
screen keyboard. For example, character pairs like (“w”,
“e”) are usually easy to incorrectly enter for a touchscreen
keyboard. However, the transfer probabilities of these two
characters using AirText are almost zero, since their trajec-
tories are significantly different.

Model convergence for new users. When a new user
starts to use AirText, the model update component will
update the two-phase models to quickly converge to stable

Authorized licensed use limited to: Zhejiang University. Downloaded on December 09,2021 at 07:05:09 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3130036, IEEE
Transactions on Mobile Computing

11

a b c d e f g h i j k l m n o p q r s t u v w x y z

a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z

0.000.00 0.02 0.000.010.000.00 0.000.01 0.02 0.00 0.000.00

0.000.010.010.01 0.00 0.00 0.00 0.00

0.000.01 0.010.00 0.01 0.000.00 0.01

0.00 0.01 0.020.00 0.01 0.000.00 0.000.00

0.00 0.020.01 0.010.01 0.00 0.00 0.01

0.00 0.000.00 0.00 0.01 0.00

0.000.01 0.000.00 0.00 0.00 0.01 0.00 0.00

0.01 0.00 0.000.00 0.01 0.00 0.02 0.00

0.00 0.01 0.010.00 0.00

0.00 0.010.00 0.00 0.01 0.00 0.01 0.00 0.00

0.00 0.00 0.00 0.00 0.000.00 0.00 0.00 0.01

0.00 0.02 0.000.01 0.00 0.00 0.00 0.000.00 0.01 0.01

0.02 0.00 0.01 0.02 0.010.00 0.000.010.01

0.01 0.000.01 0.00 0.01 0.01 0.01 0.010.00 0.01

0.000.00 0.01 0.000.01 0.01 0.01 0.010.00

0.01 0.000.00 0.00 0.010.00 0.00 0.00

0.01 0.00 0.000.010.000.01 0.01 0.01

0.00 0.00 0.01 0.000.000.01 0.00 0.010.01

0.02 0.01 0.00 0.00 0.00

0.00 0.000.01 0.00 0.000.01 0.00 0.01 0.00

0.020.010.000.00 0.01 0.01 0.010.01 0.01 0.00 0.000.000.01 0.00

0.00 0.01 0.01 0.000.00 0.010.00

0.00 0.00 0.01 0.01

0.000.00 0.00 0.00 0.000.01 0.01 0.000.00 0.010.00

0.00 0.01 0.01 0.00 0.01 0.00 0.01

0.00 0.00 0.00 0.00 0.01 0.00 0.000.000.000.00
0.0

0.2

0.4

0.6
0.8
1.0

Fig. 14. Transfer probabilities of 26 lower case characters. The value in
entry (i, j) represents the probability that a character of the ith row is
recognized as a character of the jth column. In order to show the close-
to-zero probabilities, the grayscale is non-linear.

performance. We have trained a base model with the train-
ing samples provided by user8 in Section 7.2 before. The
phase2 models of other users were all updated on the base
model of the user 8. Seven users were asked to use AirText to
input about 20 sentences a day without Leap Motion. Then
AirText updated the model for each user during the test
every 8 hours. Figure 15 shows how the CER performance
converges for the seven users. After two days (i.e., about
40 sentences), the CERs of six users (user2 to user7) are
already below 10%. The CER of the remaining user (user1)
also drops below 10% after four days. After seven days, the
CERs of seven users (user1 to user7) are 9.4%, 6.1%, 4.8%,
5.0%, 4.6%, 5.7% and 5.2%, respectively. The results show
that with the model update module, the performance of
AirText for new users is able to converge to an acceptable
level quickly.

8 1 6 2 4 3 2 4 0 4 8 5 6 6 4 7 2 8 0 8 8 9 6 1 0 4 1 1 2 1 2 0 1 2 8 1 3 6 1 4 4 1 5 2 1 6 0 1 6 8
0 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

C
E

R

T i m e (h o u r)

 u s e r 1

 u s e r 2

 u s e r 3

 u s e r 4

 u s e r 5

 u s e r 6

 u s e r 7

Fig. 15. Model convergence performance. Six new users’ CERs de-
crease below 10% within 48 hours.

Fine-tuning based on transfer probabilities. After the
phase2 CNN model, AirText also includes a fine-tuning
module to calibrate the probability of each character. This
fine-tuning is based on the transfer probabilities of each
pair of characters. In fact, Figure 14 includes the transfer
probabilities of the 26 lower case characters.

In order to quantify the performance gain of this fine-
tuning module, we use the following calculation method.
For all the characters which are not correctly recognized
by the phase2 CNN model, we compare the probabilities
before and after the fine-tuning and report the relative
improvement. For example, if a letter “x” is not correctly

10% 20% 30% 40%0.0 0%

0.2

0.4

0.6

0.8

1.0

C
D

F

Average
Median

Performance gain of fine tuning

Fig. 16. Performance gain of the fine-tuning method based on the
transfer probabilities. On average, the fine-tuning method increases the
probabilities of the correct characters by 7.4%.

recognized and its probability is 0.3, the performance gain
of the fine-tuning is 10% if the probability becomes 0.33
after fine-tuning. Figure 16 shows the results. On average,
the performance gain of the fine-tuning is about 7.4%.
This improvement shows that the fine-tuning module based
on the transfer probabilities can provide a more accurate
estimation of the probability of each handwritten character.

2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4 2 6 2 8 3 0 3 2 3 4 3 6 3 8 4 0 4 20 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7

W
ER

S e n t e n c e I n d e x

 w i t h w o r d r e c o m m e n d a t i o n w i t h o u t w o r d r e c o m m e n d a t i o n

Fig. 17. WER of AirText with and without word recommendation for the
42 sentences. Results show that the word recommendation component
of AirText significantly improve the text entry accuracy at the word level,
i.e., from a WER of 20.7% to a of WER 3.7%.

7.3.3 Word Recommendation

In this experiment, we show the WER of AirText for differ-
ent users (user1 to user8) when the word recommendation
used or not. The results are shown in Figure 17. On average,
the WERs with and without the word recommendation
component are 3.7% and 20.7%, respectively. We can see
that using the word recommendation component can sig-
nificantly improve the performance of AirText.

7.4 Robustness of AirText

In these experiments, we examine the robustness of AirText
in terms of handwriting speed, character size, and environ-
ment on Suser. As for long-term IMU drift, all users were
asked to write extra sentences to test Airtext periodically.

Impact of handwriting speed. Each volunteer handwrite
characters with a speed he/she feels comfortable. The hand-
writing speed is defined as the time cost of handwriting a
character. The handwriting time is calculated by the times-
tamps during data collection. In Figure 18(a) we can see
that when the user handwrites a character too fast or too
slow, the CER will increase. The reason is that in the training
set, the handwriting speed of most of the training samples
is about 1.1 second. Therefore, when the writing speed is
similar to the training set, the accuracy is maximized.

Authorized licensed use limited to: Zhejiang University. Downloaded on December 09,2021 at 07:05:09 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3130036, IEEE
Transactions on Mobile Computing

12

< 0 . 8 0 . 8 0 . 9 1 1 . 1 1 . 2 1 . 3 1 . 4 1 . 5 1 . 6 > 1 . 7
0 . 0 0

0 . 0 4

0 . 0 8

0 . 1 2

0 . 1 6

0 . 2 0
C

ER

T i m e c o s t o f o n e c h a r a c t e r (s)

(a) speed

< 8 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 > 2 0
0 . 0 0

0 . 0 4

0 . 0 8

0 . 1 2

C
ER

C h a r a c t e r S i z e (c m)

(b) size

L a b o r a t o r y M e e t i n g R o o m L i v i n g R o o m
0 . 0 0

0 . 0 2

0 . 0 4

0 . 0 6

W
ER

E n v i r o n m e n t

(c) environment

0 1 2 5 8 1 0 1 1 1 2
0 . 0 0

0 . 0 2

0 . 0 4

0 . 0 6

0 . 0 8

0 . 1 0

C
ER

T i m e (m o n t h)

(d) IMU drift

Fig. 18. Robustness of AirText. WER or CER results of AirText with
considering different impact factors, i.e., the handwriting speed, the
character size, the environment, and the long-term IMU drift.

Impact of character size. Different users handwrite char-
acters in the air with different sizes. The character sizes are
extracted from the Leap Motion data. Since the Leap Motion
data obtains the positions of the fingertip, the character’s
height is defined as the highest reading minus the lowest
reading, and the same for the width. Figure 18(b) shows
the impact of character size. We can see similar results as
the impact of handwriting speed, i.e., characters with a size
about 13cm can be correctly recognized with the maximal
probability. An interesting observation is that for a small
number of samples where the character size becomes larger
than 19cm, the character recognition accuracy increases.
After analyzing the raw data carefully, we find the reason
as follows. When a user handwrites a character with a very
large size, in addition to the wrist rotation, the wrist will
move along the trajectory as the fingertip. These movements
provide effective features for character recognition.

Impact of different environments. We also evaluate
the impact of different environments on the performance
of AirText, including a laboratory, a meeting room, and
a living room. Figure 19 shows these three environments,
with computers, projectors, and household appliances. Fig-
ure 18(c) shows that the AirText achieves high accuracy in
all the three environments. In particular, accuracy reaches
the most stable in the living room. A possible reason is that
compared with the first two environments which are inside
a teaching building, the living room inside a residential
building introduces weaker magnetic interference.

9m

6
m3

m

Door

(a) laboratory

8m

5
m

D
o
o

r

(b) meeting room

9m

6
m

D
o
o
r

TV

(c) living room

Fig. 19. Three different environments. The first two are inside a teaching
building and the last one is inside a residential building.

Impact of long-term IMU drift. IMUs could have long-
term drift [23] which is harmful to the text entry perfor-
mance. In order to evaluate the performance of AirText
under this long-term IMU drift, we conducted the following

experiments. Given a trained model, we asked the users to
test AirText after several months and obtained the results.
Figure 18(d) shows the results during the year. Note that
these experiments are not done every month. We can see
that with the model update module, the CER of AirText
keeps stable during the whole year.

8 CONCLUSION

In this paper, we propose AirText, an accurate, efficient,
and practical text entry method for COTS smartwatches.
AirText includes a novel cross-modal supervision design
to accurately infer the fingertip trajectories from the small
movements of the wrist. Then the character recognition
component of AirText uses a CNN model to classify charac-
ters from their inferred trajectories. Finally, the recognized
characters are fed into the word recommendation compo-
nent, which is able to find the candidate words efficiently
and accurately. We implemented AirText on five commercial
smartwatches and evaluated its performance extensively.
Eight volunteers participated in the evaluation of AirText,
and more than 25,000 characters were handwritten in the
air. Results show that AirText outperforms two baselines
and achieves high accuracy comparable text entry speed as
two-handed approaches.

Limitations and future work. The first limitation is
that the user needs to pause between the characters. As
future work, we will try to train a model to directly infer
a word from the fingertip trajectories of the whole word.
Since the inference time is shorter than the writing time,
another solution is to find a light-weighted cutting method
to cut the characters. Therefore, Airtext can infer the pre-
vious character while writing the next. Second, currently
the smartwatch is put on the dominant hand for a better
input experience, because it’s uncomfortable to handwrite
with the non-dominant hand. Technically, both the left
hand and the right hand are supported by AirText. In the
future, we will train new models to support both hands.
Third, we will further investigate the fine-grained relation
between the fingertip movements and the wrist movements.
A possible approach is to decompose the handwriting into
more basic movements (e.g., left/right circle, slash/back-
slash, vertical/horizontal line), and train more models to
classify characters. The forth limitation of AirText is that
if the users use AirText to enter a large amount of text,
they may suffer fatigue and the text entry speed is relatively
slow. But since AirText is used on smartwatches, users will
not use AirText to enter a large amount of text. Instead,
they will only use they will only use it for some short
message replies (e.g. reply a message “I am meeting” during
a meeting). Fifth, although Airtext can adapt to different
users and devices easily by fine tuning, considering some
state-of-art approaches of domain adaption will improve
the performance and robustness of Airtext furthermore.
FiDo [33] provides a faster approach to converge to different
users and devices. Currently, Airtext is not usable under the
impacts of the body movements. EI [34] focuses on elimi-
nating the environmental features and PCIDA [35] focuses
on domain adaption on continues domains. In the future,
these approaches will be tried to get rid of the impacts of
the movements.

Authorized licensed use limited to: Zhejiang University. Downloaded on December 09,2021 at 07:05:09 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3130036, IEEE
Transactions on Mobile Computing

13

ACKNOWLEDGMENTS

This work was supported by the National Science Foun-
dation of China (No. 61872437 and No. 61772465), and the
Zhejiang Provincial Natural Science Foundation for Distin-
guished Yound Scholars under No. LR19F020001.

REFERENCES

[1] Z. Wang, T. Zhao, J. Ma, H. Chen, K. Liu, H. Shao, Q. Wang, and
J. Ren, “Hear sign language: A real-time end-to-end sign language
recognition system,” IEEE Transactions on Mobile Computing, pp.
1–1, 2020.

[2] Y. Jiang, Z. Li, and J. Wang, “Ptrack: Enhancing the applicability of
pedestrian tracking with wearables,” IEEE Transactions on Mobile
Computing, vol. 18, no. 2, pp. 431–443, 2019.

[3] J. Hong, S. Heo, P. Isokoski, and G. Lee, “Splitboard: A simple split
soft keyboard for wristwatch-sized touch screens,” in Proceedings
of the 33rd Annual ACM Conference on Human Factors in Computing
Systems (CHI), 2015, pp. 1233–1236.

[4] X. A. Chen, T. Grossman, and G. Fitzmaurice, “Swipeboard: A
text entry technique for ultra-small devices that supports novice
to expert transitions,” in Proceedings of the 27th Annual ACM
Symposium on User Interface Software and Technology (UIST), 2014.

[5] M. Gordon, T. Ouyang, and S. Zhai, “Watchwriter: Tap and gesture
typing on a smartwatch miniature keyboard with statistical decod-
ing,” in Proceedings of the 34th AnnualACM Conference on Human
Factors in Computing Systems (CHI), 2016, pp. 3817–3821.

[6] S. Oney, C. Harrison, A. Ogan, and J. Wiese, “Zoomboard: A
diminutive qwerty soft keyboard using iterative zooming for
ultra-small devices,” in Proceedings of the 31th Annual ACM Con-
ference on Human Factors in Computing Systems (CHI), 2013, pp.
2799–2802.

[7] R. Jang, C. Jung, D. Mohaisen, K. Lee, and D. Nyang, “A one-page
text entry method optimized for rectangle smartwatches,” IEEE
Transactions on Mobile Computing, pp. 1–1, 2021.

[8] X. Lin, Y. Chen, X.-W. Chang, X. Liu, and X. Wang, “Show: Smart
handwriting on watches,” Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies (UbiComp), vol. 1, no. 4,
pp. 151:1–151:23, 2018.

[9] J. Gong, Z. Xu, Q. Guo, T. Seyed, X. A. Chen, X. Bi, and X.-
D. Yang, “Wristext: One-handed text entry on smartwatch using
wrist gestures,” in Proceedings of the Conference on Human Factors in
Computing Systems (CHI), 2018, pp. 181:1–181:14.

[10] D. Moazen, S. A. Sajjadi, and A. Nahapetian, “Airdraw: Lever-
aging smart watch motion sensors for mobile human computer
interactions,” in Proceedings of the 13th IEEE Annual Consumer
Communications Networking Conference (CCNC), 2016, pp. 442–446.

[11] C. Xu, P. H. Pathak, and P. Mohapatra, “Finger-writing with
smartwatch: A case for finger and hand gesture recognition using
smartwatch,” in Proceedings of the 16th International Workshop on
Mobile Computing Systems and Applications (HotMobile), 2015, pp.
9–14.

[12] P. C. Wong, K. Zhu, and H. Fu, “Fingert9: Leveraging thumb-to-
finger interaction for same-side-hand text entry on smartwatches,”
in Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems, 2018, pp. 1–10.

[13] S. Agrawal, I. Constandache, S. Gaonkar, R. Roy Choudhury,
K. Caves, and F. DeRuyter, “Using mobile phones to write in air,”
in Proceedings of the 9th international conference on Mobile systems,
applications, and services, 2011, pp. 15–28.

[14] W. Kienzle and K. Hinckley, “Lightring: Always-available 2d input
on any surface,” in Proceedings of the 27th Annual ACM Symposium
on User Interface Software and Technology, 2014, p. 157–160.

[15] “Leap motion,” 2019. [Online]. Available: https://www.leapmoti
on.com/

[16] J. Hou, X.-Y. Li, P. Zhu, Z. Wang, Y. Wang, J. Qian, and P. Yang,
“Signspeaker: A real-time, high-precision smartwatch-based sign
language translator,” in The 25th Annual International Conference on
Mobile Computing and Networking (MobiCom), 2019.

[17] S. Shen, H. Wang, and R. Roy Choudhury, “I am a smartwatch
and i can track my user’s arm,” in Proceedings of the 14th Annual
International Conference on Mobile Systems, Applications, and Services
(MobiSys), 2016, pp. 85–96.

[18] K. Sun, Y. Wang, C. Yu, Y. Yan, H. Wen, and Y. Shi, “Float:
One-handed and touch-free target selection on smartwatches,”
in Proceedings of the 2017 CHI Conference on Human Factors in
Computing Systems (CHI), 2017, pp. 692–704.

[19] J. Gong, X.-D. Yang, and P. Irani, “Wristwhirl: One-handed con-
tinuous smartwatch input using wrist gestures,” in Proceedings of
the 29th Annual Symposium on User Interface Software and Technology
(UIST), 2016, pp. 861–872.

[20] A. Dementyev and J. A. Paradiso, “Wristflex: Low-power gesture
input with wrist-worn pressure sensors,” in Proceedings of the 27th
Annual ACM Symposium on User Interface Software and Technology
(UIST), 2014, pp. 161–166.

[21] “Shimmer,” 2019. [Online]. Available: http://www.shimmersensi
ng.com/

[22] K. Katsuragawa, J. R. Wallace, and E. Lank, “Gestural text input
using a smartwatch,” in Proceedings of the International Working
Conference on Advanced Visual Interfaces (AVI), 2016, pp. 220–223.

[23] Y. Yuksel, N. El-Sheimy, and A. Noureldin, “Error modeling and
characterization of environmental effects for low cost inertial
mems units,” in IEEE/ION Position, Location and Navigation Sym-
posium (PLANS), 2010, pp. 598–612.

[24] F. Weichert, D. Bachmann, B. Rudak, and D. Fisseler, “Analysis of
the accuracy and robustness of the leap motion controller,” Sensors,
vol. 13, no. 5, pp. 6380–6393, 2013.

[25] G. V. Bard, “Spelling-error tolerant, order-independent pass-
phrases via the damerau-levenshtein string-edit distance metric,”
in Proceedings of the fifth Australasian symposium on ACSW frontiers
(ACSW), 2007, pp. 117–124.

[26] A. Fazly and G. Hirst, “Testing the efficacy of part-of-speech
information in word completion,” in Proceedings of the 2003 EACL
Workshop on Language Modeling for Text Entry Methods (TextEntry),
2003.

[27] J. Goodman, G. Venolia, K. Steury, and C. Parker, “Language
modeling for soft keyboards,” in Proceedings of the 7th international
conference on Intelligent user interfaces (IUI), 2002, pp. 194–195.

[28] C. P. Willmore, N. K. Jong et al., “Text prediction using combined
word n-gram and unigram language models,” 2017, patent NO
9,785,630, Filed May 5th., 2015, Issued Oct. 10th., 2017.

[29] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,
S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard,
Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,
J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow:
Large-scale machine learning on heterogeneous systems,” 2015,
software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[30] “Airtext dataset,” 2020. [Online]. Available:
https://www.dropbox.com/sh/d0793k9lyg4bpmz/AADLmu

F7Tg33S2sD90DojZRBa?dl=0
[31] K. Vertanen and P. O. Kristensson, “A versatile dataset for text

entry evaluations based on genuine mobile emails,” in Proceedings
of the 13th International Conference on Human Computer Interaction
with Mobile Devices and Services (MobileHCI), 2011, pp. 295–298.

[32] A. Graves and N. Jaitly, “Towards end-to-end speech recognition
with recurrent neural networks,” in Proceedings of the 31st Interna-
tional conference on machine learning (ICML), 2014, pp. 1764–1772.

[33] X. Chen, H. Li, C. Zhou, X. Liu, D. Wu, and G. Dudek, “Fido: Ubiq-
uitous fine-grained wifi-based localization for unlabelled users via
domain adaptation,” in Proceedings of The Web Conference 2020,
2020, pp. 23–33.

[34] W. Jiang, C. Miao, F. Ma, S. Yao, Y. Wang, Y. Yuan, H. Xue, C. Song,
X. Ma, D. Koutsonikolas et al., “Towards environment indepen-
dent device free human activity recognition,” in Proceedings of
the 24th Annual International Conference on Mobile Computing and
Networking, 2018, pp. 289–304.

[35] H. Wang, H. He, and D. Katabi, “Continuously indexed domain
adaptation,” arXiv preprint arXiv:2007.01807, 2020.

Authorized licensed use limited to: Zhejiang University. Downloaded on December 09,2021 at 07:05:09 UTC from IEEE Xplore. Restrictions apply.

https://www.leapmotion.com/
https://www.leapmotion.com/
http://www.shimmersensing.com/
http://www.shimmersensing.com/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.dropbox.com/sh/d0793k9lyg4bpmz/AADLmuF7Tg33S2sD90DojZRBa?dl=0
https://www.dropbox.com/sh/d0793k9lyg4bpmz/AADLmuF7Tg33S2sD90DojZRBa?dl=0

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3130036, IEEE
Transactions on Mobile Computing

14

Yi Gao (M’15) received the B.S. and Ph.D. de-
grees from Zhejiang University, China, in 2009
and 2014, respectively. From 2015 to 2016, he
visited McGill University as a Visiting Scholar.
He is currently an Associate Professor with Zhe-
jiang University. His research interests include
Internet of Things, network measurement, mo-
bile and edge computing. He is a member of the
IEEE and the ACM.

Siyu Zeng received the M.S. degree in computer
technology from Zhejiang University, China, in
2021. He is currently a software development
engineer. His research interests include sensor
networks and wireless sensing.

Ji Zhao received the Ph.D. degree in computer
science from Zhejiang University, China. His re-
search interests include data mining, financial
informatization and fintech. He is a review expert
of Shanghai government procurement, the head
of information Technology risk Team of Shanghai
Banking Network Industry Association.

Wenxin Liu received the M.S. degree in com-
puter science from Zhejiang University in 2020.
He is currently a Software Development Engi-
neer. His research interests include sensor net-
works and wireless sensing.

Wei Dong (S’08–M’12) received the B.S. and
Ph.D. degrees from the College of Computer
Science at Zhejiang University in 2005 and
2011, respectively. He is currently a full pro-
fessor in the College of Computer Science at
Zhejiang University. He leads the Embedded and
Networked Systems (EmNets) lab in Zhejiang
University. He has published over 100 papers in
prestigious conferences and journals including
MobiCom, INFOCOM, ICNP, ToN, TMC, etc. His
research interests include Internet of Things and

sensor networks, wireless and mobile computing, and network measure-
ment. He is a member of the IEEE and the ACM.

Authorized licensed use limited to: Zhejiang University. Downloaded on December 09,2021 at 07:05:09 UTC from IEEE Xplore. Restrictions apply.

