
IEEE TRANSACTIONS ON MOBILE COMPUTING 1

Reducing End-to-End Latency of Trigger-Action
IoT Programs on Containerized Edge Platforms

Wenzhao Zhang, Yixiao Teng, Yi Gao, Member, IEEE, and Wei Dong, Member, IEEE

Abstract—IoT rule engines are important middlewares that allow users to easily create custom trigger-action programs (TAPs) and
interact with the physical world. Users expect their TAPs to give a timely response within a certain deadline. Existing works provide this
support by boosting the process of trigger event identification. Many IoT rule engines now run in containerized environments, bringing
about new challenges and opportunities. Prior solutions can no longer satisfy the need of mitigating the end-to-end latency of
containerized TAPs. In this work, we propose EdgeRuler, which couples the IoT rule engine and the container runtime to assure the
performance of latency-critical TAPs. To enable such capability, EdgeRuler precisely models the end-to-end latency by exploiting
information from both the physical and the cyber world. EdgeRuler then enforces a deadline-aware life-cycle control and resource
provision for meeting the TAP constraints in a lightweight and efficient way. We prototype and evaluate EdgeRuler on top of
production-ready open-source components, which shows that EdgeRuler reduces the end-to-end latency by 28.6%-96.2% compared to
existing scheduling algorithms and 68.4%-89.1% to that of the state-of-the-art IoT rule engines, incurring negligible runtime overhead.

Index Terms—Edge Computing, IoT Rule Engine, Real-Time

✦

1 INTRODUCTION

THE IoT rule engine allows users to seamlessly interact
with increasingly pervasive IoT devices by writing their

own custom services as a trigger-action program (TAP)
with simple “If This Then That” syntax. As a fundamental
middleware of edge cloud IoT platforms, many IoT rule
engine solutions run in containerized environments [1]–[3].
Compared to previous bare-metal solutions, containeriza-
tion help IoT rule engines achieve better portability, isola-
tion, and manageability. Holding TAP in separate containers
reliably prevent buggy TAPs from sabotaging others when
they are running on the same machine [4]. Containerization
is also an ongoing trend. According to Gartner, by 2025,
more than 85% of global organizations will be running
containerized applications in production [5].

It is crucial for the IoT rule engine to provide real-
time response as high latency may lead to the failure to
promptly respond to emergency scenarios, compromised
system stability, and even potential safety hazards. This
need has been recognized by both industry (e.g., IFTTT
[6]) and research (e.g., RTX-IFTTT [7]) solutions. Specifically,
IFTTT provides real-time API [8] for developers to inform
the engine of new events available and ask for immediate
polling. Based on the API, RTX-IFTTT further proposes a
prediction method to facilitate the identification process of
device trigger events (e.g., switch on/off). Although existing
works perform well in non-containerized environments,
they overlook the complex situations for containerized ones.
Besides data or event polling, there are many subsequent
procedures afterward that might impact the end-to-end

• W. Zhang, Y. Teng, Y. Gao, and W. Dong are with the College
of Computer Science, Zhejiang University, Zhejiang 310027, China.
E-mail: wz.zhang@zju.edu.cn, tengyixiao@zju.edu.cn, gaoyi@zju.edu.cn,
dongw@zju.edu.cn.

Manuscript received xx xx xxxx; revised xx xx xxxx.
Date of publication x.xxxx; date of current version x.xxxx.
Corresponding author: Wei Dong.

(E2E) latency of containerized TAPs, including trigger event
routing, action container provisioning, and execution, etc.

To find out the bottleneck of E2E latency, we conduct
experiments on representative edge benchmarks [9]. We find
that TAPs experience a disappointing E2E response latency
even for a simple rule. For example, the TAP “IF smoke
>300ppm THEN set off the alarm” takes>2.97s. An in-
depth investigation reveals the root reason, i.e., the loose-
coupling design between the rule engine and the container
runtime. On one hand, the rule engine does not know the
instantaneous container provision dynamics. On the other
hand, the container engine does not know the real TAP
demand (e.g., how many resources are required and their
deadline), and thus provisions an inappropriate amount of
resources. Consequently, the two factors combined lead to
excessive long response latency (§2).

To deal with the long E2E latency, we pro-
pose EdgeRuler, the first deadline-aware containerized
IoT rule engine for edge cloud platforms. Specifically,
EdgeRuler provides an enhanced IFTTT syntax that al-
lows users to specify the TAP demand such as dead-
line and resource requirements. With these specifications,
EdgeRuler designs a holistic scheduler that couples IoT rule
engine and container runtime to minimize the E2E latency
while meeting the deadline. The key idea of the scheduler
is to integrate the physical-world information from the IoT
rule engine (e.g., raw sensor value and the predicted event
occurrence time) and cyber-world information from the
container runtime (e.g., available resources and estimated
execution time). Given the aforementioned information, the
scheduler jointly considers container life-cycle control and
resource allocation by coordinating both sides. §2 provides
a motivating example to show that only considering one
aspect can lead to sub-optimal or infeasible solutions.

Challenges. We face two unique challenges when real-
izing the scheduler. Firstly, how to precisely understand the

IEEE TRANSACTIONS ON MOBILE COMPUTING 2

impact of the scheduling policies on E2E latency for containerized
TAPs? Our scheduler has two kinds of policies, i.e., when
to start an action container (mainly affects T prov) and how
many resources to allocate (mainly affects T exec). Tradition-
ally, T prov ≥ the container cold-start time T cold. The IoT rule
engine imposes unique opportunities to optimize T prov .
We can leverage sensor value prediction [10] to pre-warm
container(s) [11] and thus reduce or even get rid of T prov .
However, IoT sensors have inherent data drift and bias due
to imperfections in manufacturing and calibration, which
makes the predicted TAP triggered time less reliable. On the
other hand, the impact of allocated resources for T exec of
action container(s) is vague [12]. If we cannot judiciously un-
derstand both sides, it will lead to that: (i) over-shooting the
TAP demand degrading resource usage; (ii) underestimation
of its effects on response latency. Secondly, how to efficiently
derive a (near-)optimal scheduling plan when facing the expo-
nential growth of decision space? Once EdgeRuler learns the
E2E latency, the real-time guarantee depends on the timely
scheduling decisions. A straightforward way is to exhaus-
tively enumerate all possible combinations. Nevertheless,
the decision space increases exponentially as the number of
triggered TAPs grows, which makes it challenging to obtain
the optimal solution. Meanwhile, dynamically adjusting the
decision according to different quality of experience further
complicates the problem.

Our solution. For challenge 1, EdgeRuler advocates a
streamified derivative based online sensor value prediction
model to predict T prov , which provides better performance
than offline models. Besides, we propose a maximum nor-
malized time gradient (MNTG) model to bound the estima-
tion error. Moreover, we integrate a performance model to
estimate T exec, which can seamlessly work with MNTG and
is easy to replace. For challenge 2, we propose a progressive
online scheduling algorithm based on a dynamic merging
cache. In essence, the algorithm uses the deadline and re-
source constraints to prune the search space, caches feasible
plans and temporary optimal solutions for each TAP. Then it
progressively goes through other TAPs in a first in first out
manner and adjusts the results in the cache retrospectively.

We prototype EdgeRuler on top of a bunch of
production-ready open-source components. Our evaluation
shows that EdgeRuler achieves a remarkable performance,
i.e., reduces an average of 68.4% and 89.1% E2E latency
compared to edge and cloud baselines from both industry
and literature solutions. Moreover, EdgeRuler incurs the
negligible system overhead.

The contributions of this paper are:

• To our best knowledge, EdgeRuler is the first real-
time IoT rule engine for containerized edge cloud
platforms.

• With the extra information specified by an enhanced
syntax, EdgeRuler proposes mathematical models to
uncover the underlying relationship between specifi-
cations and scheduling policies. Based on the models,
we further advocate a progressive scheduling algo-
rithm based on a dynamic merging cache to handle
the exponentially large decision space. Compared
to the oracle solution, we have an increase of 1%
deadline misses and 3% E2E latency but give timely

decisions in 3.7ms.
• We prototype EdgeRuler on production-ready open-

source software and validate significant performance
gains using extensive experiments.

2 MOTIVATING EXAMPLE

A containerized IoT rule engine typically serves multiple
TAPs with diverse computing resource requirements and
time sensitivities. To find out the bottleneck of E2E latency,
we conduct experiments on top of a containerized IoT
rule engine we built in accordance with the state-of-the-art
reference designs [2], [3], [10].

2.1 Experiment Setup
The containerized IoT rule engine. We use production-
ready open-source software to build the engine. Specifically,
we (1) use TDEngine to store time-serial IoT data; (2) lever-
age Redis to keep record of events, TAPs, and other runtime
specifications; (3) exchange messages via RabbitMQ; (4)
coordinate requests with Nginx; (5) encapsulate above mod-
ules and host them on the Docker container engine. Note
that these components run in separate containers at runtime,
which offers opportunities for auto-scaling mechanisms and
prevents single-point failure.

The TAP execution model. Users appear online and pro-
duce TAP in arbitrary order and time. Each TAP is correlated
with one or more IoT sensors, which are served as triggers.
The sensor data of IoT devices are continuously streaming
into the edge cloud server with fixed time intervals. Each
TAP is also correlated with one or more IoT actuators
or other services, which are served as actions. In general,
each TAP is triggered and run in a serverless-like manner.
Every time the trigger condition of a TAP is satisfied (e.g.,
the sensor reading is above an predefined threshold), the
scheduler of EdgeRuler will decide whether to bootstrap
the corresponding action container(s).

Workloads and host machine specifications. As the
action applications can be quite diverse at the edge [13]–[15],
we select three cases (i.e., threshold-based alarm, image, and
audio processing) that cover both scalar and stream data
from a representative edge benchmark [9] as workloads. We
use the same hardware and software (including versions)
settings in the evaluation (see §7.1).

The E2E latency definition. The action container images
are already pulled from the centralized registry at the edge
cloud platform. The E2E latency throughout the paper starts
from the trigger event of a rule arrives and ends with its last
action container finishes.

2.2 Observations and Challenges
During the experiments, we run each workload at a time
with no other interference. We measure the provisioning
time (i.e., the cold-start time), execution time, and others
such as message exchange time by keeping track of essen-
tial timestamps. More importantly, we manually vary the
allocated resources (e.g., CPU cores) by altering the typical
resource control flags (e.g., --cpus) to measure the range of
execution time. Each case is executed several times and we
present the average values. Fig. 1 shows the overall results.

IEEE TRANSACTIONS ON MOBILE COMPUTING 3

4.57

4.39

0.46

1.46

0.21
0.83

10.92

10.75
1.68

0.01

0.01

0.01

0 5 10 15 20

image

audio

alarm

End-to-End Latency (s)

B
en

ch
m

ar
ks

provisioning execute (min) execute (delta) others

Fig. 1: Latency breakdown of containerized TAPs. The pro-
visioning time is the duration from the TAP being triggered
to the action container being ready; the execute(min) +
execute(delta) indicates the execution latency range when
the container is allocated different resources.

CPU

time
𝐼𝑡𝑐𝑢𝑟
𝑠𝑐ℎ𝑒𝑑

Capacity

Consumed Resource Plan to allocate resource

𝒕𝒂𝟏
𝒆𝒗𝒆𝒏𝒕 𝑫𝒂𝟏𝒕𝒂𝟐

𝒆𝒗𝒆𝒏𝒕 𝑫𝒂𝟐𝒕𝒂𝟐
𝒂𝒄𝒕𝒊𝒐𝒏𝒕𝒂𝟏

𝒂𝒄𝒕𝒊𝒐𝒏

Miss Deadline!𝑻𝒂𝟐
𝒔𝒕𝒂𝒓𝒕

Overloaded!

𝑻𝒂𝟐
𝒄𝒐𝒍𝒅+𝒆𝒙𝒆𝒄𝑻𝒂𝟏

𝒆𝒙𝒆𝒄𝑻𝒂𝟏
c𝒐𝒍𝒅

Fig. 2: Timeline of two example TAPs, each of which is
assumed to have single action container, c11 and c12.

Observations and possible solutions. We find that TAPs
experience a disappointing E2E response latency even for a
simple rule. We notice that the time of container provision
(T prov) and TAP execution (T exec) dominate the latency
(takes up 99.88%). Moreover, the range of T exec is quite large
when the TAP is allocated different amount of resources.
One line of possible solutions is to alleviate the container
cold-start [16]–[20] by reusing resources, optimize virtual-
ization techniques, and control the life-cycle of containers.
They make decisions only with cyber-world information
(e.g., request arrival pattern and available resources), which
leads to sub-optimal solutions. There are also mechanisms
like admission control, offloading, and batching for server-
less or containerized services [21], [22] to tune the QoS,
which is orthogonal to our work.

Challenges. More importantly, it becomes a harder nut
to crack when the cold-start problem runs into the multi-
container resource allocation problem. Fig. 2 illustrates an
example. Within a scheduling interval, the predictors pre-
dict that two TAPs will be triggered. The scheduler should
decide when to start c11 and c12 and how many computing
resources (e.g., CPU) are supposed to allocate. However, the
decisions are difficult to make. If we follow the straight-
forward on-demand execution manner, c11 will be invoked
at teventa1 and the required resource will be assigned to a1.
When it is teventa2 , the resource left for a2 is not enough
for getting a timely response (the orange and red blocks).
Fortunately, as our scheduler has already foreseen the two
trigger events, it can decide to pre-start the c11 and postpone
c12 for T starta2 so that c12 can have enough resources to finish
on-time (the blue blocks). Situations will be much more
complicated when Ischedtcur and the number of triggered TAPs
are dynamically changed.

applet ::= IF Comb(triggers) THEN Comb(actions) WITH Comb(constraints)

Comb(triggers) ::= triggers && triggers

::= triggers || triggers

::= trigger trigger ::= 𝑆𝑖 △𝑋𝑖

Comb(actions) ::= actions; action

::= actions

::= action

action ::= 𝐴𝑖.operation()

Comb(constraints) ::= constraints && constraints

::= constraint

constraint ::= Time < D

::= Resource < r

△ ::= <,≤,==,>,≥,≠

Fig. 3: EdgeRuler syntax. Here, Xi, D, and r are constants.

3 DESIGN OF EDGERULER FRAMEWORK

3.1 Design Goals
We aim to design a framework that can provide the real-time
response of IoT TAPs yet is resource friendly to seamlessly
work on edge cloud platforms. To balance responsiveness
and resource utilization, we want EdgeRuler to be:

• Configurable that allows users to precisely specify
their distinct needs for different TAPs, e.g., deadline
and maximum resource consumption.

• Lightweight that does not interfere with other mod-
ules and can provide responsive decisions.

• Adaptive that can handle diverse data modalities
and complex computing resource situations at run-
time.

3.2 Usage of EdgeRuler
Existing industrial solutions only offer implicit real-time
interfaces and thus cannot be configurable. Fortunately, some
recent research works [10], [23] extend the existing syntax
by adding the constraints segment. EdgeRuler further
extends the resource syntax in this segment.

Fig. 3 illustrates the overall syntax of the EdgeRuler lan-
guage. The syntax consists of three segments, i.e.,
triggers, actions, and constraints. Like the syntax
of IFTTT, actions will be actuated when triggers are all
triggered in a TAP. The trigger can recursively consist of
&& or || combinations of triggers. Each trigger consists
of a sensing value Si, a target value Xi, and a relational
operator △. Similarly, action can recursively consist of a
series of parallel or sequential executed actions, each of
which describes an operation of a containerized actuator.

Unlike the syntax of IFTTT, EdgeRuler considers spe-
cific requirements in edge cloud platforms and has
constraints in its syntax. The constraints allow users
to specify the deadline D and resource quota r for a TAP.
With the information, the EdgeRuler framework can then
adaptively tune the underlying system-level parameters at
runtime, making the best effort to ensure TAPs meet their
deadlines and balance the overall resource utilization.

3.3 EdgeRuler Workflow
Traditional IoT rule engine follows a relatively simple work-
flow [24] with the following three steps. (1) The event pro-
cessors continuously take in IoT data and generate (trigger)
events. (2) Given the trigger events, the rule evaluator deter-
mines if any rules are triggered. (3) When a rule is triggered,
the rule engine executes the corresponding action(s).

To provide real-time support in a containerized environ-
ment, EdgeRuler follows a quite different workflow as

IEEE TRANSACTIONS ON MOBILE COMPUTING 4

IoT

Sensors

Evaluation Phase Actuation Phase

Multi-Scale Predictor
(§IV-A)

Rule Evaluator
Scheduler

(§V)
Action

Containers

Performance Model
(§IV-B)

 Predict IoT data and obtain

container provisioning times.

 Given processed events,

determine if any rules are

triggered.

 Receive

IoT data.
 Given the resource allocation,

calculate applet execution times.

Container Engine

 Derive the (pre-)start time

and resource allocation plan of

action containers.

 Start containers

at given times with

allocated resources.

Fig. 4: The overall workflow of the EdgeRuler framework.

TABLE 1: Main Notations.

Notation Definition
ai The ith TAP
cij The jth action container of ai

Rai,t Resource allocation for ai at t
Dai The daedline of ai

Ischedtcur The scheduling interval at current time point
tstartai

The time point of starting action container(s) of ai
tevent
ai

The occurrence time point of ai’s trigger event
T cold
ai

The cold start time of ai
T prov
ai

Action container(s) provisioning time of ai
T exec
ai

Action execution time of ai
T pred
ai

The predicted to be occurred time of ai’s trigger event
∆T pred

ai
The error of the predicted occurance time of ai

T e2e
ai

The E2E latency of ai
Tpred′ The set of (T pred-∆T pred)

D The deadline set
M The performance model set
Obj The objective function
τ The minimum scheduling time unit
ι The minimum resource unit
Λ A set of parameters that can tune the search space

shown in Fig. 4. Specifically, the IoT data will also feed
to predictors (detailed in §5.1), where we predict the event
occurrence time and estimate T prov . The predicted trigger
event will in turn enforce a pre-flight rule evaluation. With
the help of performance models (detailed in §5.2) that esti-
mates T exec, the scheduler (detailed in §6) (1) collects about
to actuate rules, (2) derives the (pre-)start time together with
the resource allocation plan of their action containers, and
(3) informs the container engine.

4 PROBLEM STATEMENT

The scheduler in the EdgeRuler framework dynamically
tunes the multi-scale predictor and calculates the appro-
priate resource allocation plan for action containers. This
section formally defines the real-time guarantee problem
that the scheduler is trying to address.

To support the real-time execution of a containerized
TAP, the EdgeRuler framework should execute various tasks
such as polling sensors, predicting the occurrence time
of events, evaluating trigger conditions with (predicted)
events, deciding when to (pre-)start the action container(s)
and how many resources to allocate, and forwarding action
requests to the container(s) before its deadline.

4.1 Problem Formulation

Before introducing the problem, we first list important nota-
tions in TABLE 1 for clarity. For the framework to meet the
deadline of the TAP, its action container(s) provisioning time
T provai and action execution time T execai should be shorter
than the deadline Dai .

T e2e
ai

= T prov
ai

+ T exec
ai

= tcomplete
ai

− tevent
ai

≤ Dai , (1)

where T provai and T execai are determined by the longest cij
(or the critical path for concurrent actions [12]) of the TAP;
teventai and tcompleteai specify the time point of the trigger
event happen and all cij are completed, respectively.

On the other hand, the framework is also supposed to
guarantee that the computing resources of the started action
containers should not surpass the currently available ones
of the system. So we can have:

|A|∑
i

rreqaik,t
< ravailk,t ,∀t ∈ Set(Ischedtcur), ∀k ∈ K. (2)

Here, rreqaik,t
and ravailk,t indicate the resource requirement

and capacity at each t for ai; tcur represents the current
time point and Ischedtcur denotes the scheduling period at tcur ;
Set(Ischedtcur) is defined as [tcur, tcur + Ischedtcur]. the number of
t is determined by a tunable parameter τ to adjust the time
granularity of the framework (e.g., 10 ms), which is another
design choice that reflects the configurable requirement.

To strike a good balance between E2E latency and re-
source overhead, this work formulates a problem as follows:
Find the values of T startai , Rai,t ∀ai ∈ A,∀t ∈ Set(Ischedtcur)

min

|A|∑
i

T e2e
ai,t

, ∀t ∈ Set(Ischedtcur). (3)

s.t.

{
T ime Constraint (See Eq.1),

Resource Constraint (See Eq.2).
(4)

The Rai,t here denotes the resource allocation for ai at t.
However, it is possible that the latency-resource trade-

off problem (Eq. 3) has no feasible solution. In this case,
EdgeRuler advocates to relax Time Constraint (See Eq. 1) and
obtain a best-effort solution. The relaxed problem is defined
as follows.

min

|A|∑
i

∆Dai,t, ∀t ∈ Set(Ischedtcur). (5)

Here, ∆Dai,t is the relative deviation between Tai,t and
Dai , which is defined as follows.

∆Dai,t =

{
0, if T e2e

ai,t
≤ t+Dai ,

T e2e
ai,t

−D, if T e2e
ai,t

> t+Dai .
(6)

As our scheduler is highly configurable, system operators
are allowed to substitute the optimization goals or add
constraints such as energy consumption of IoT sensors [10],
[23] with the help of EdgeRuler interfaces.

5 MATHEMATICAL MODELS FOR TIME ESTIMA-
TION WITH PROBABILITY ERROR BOUND

To solve the aforementioned problem effectively and ef-
ficiently, EdgeRuler should be able to accurately estimate
T provai and T execai with of latency and performance models.

IEEE TRANSACTIONS ON MOBILE COMPUTING 5

(a) Start before the trigger event.

𝒕𝒂𝒊
𝒓𝒆𝒂𝒅𝒚

𝑡

𝒕𝒂𝒊
𝒆𝒗𝒆𝒏𝒕𝒕𝒂𝒊

𝒔𝒕𝒂𝒓𝒕

𝑻𝒂𝒊
𝒔𝒕𝒂𝒓𝒕

∆𝑇𝑎𝑖
𝑝𝑟𝑒𝑑

𝑻𝒂𝒊
𝒄𝒐𝒍𝒅

𝑻𝒂𝒊
𝒑𝒓𝒐𝒗

𝒕𝒔𝒄𝒉𝒆𝒅

𝑇𝑎𝑖
𝑝𝑟𝑒𝑑

(b) Start after the trigger event.

𝑡

𝒕𝒂𝒊
𝒆𝒗𝒆𝒏𝒕 𝒕𝒂𝒊

𝒔𝒕𝒂𝒓𝒕

∆𝑇𝑎𝑖
𝑝𝑟𝑒𝑑

𝒕𝒂𝒊
𝒓𝒆𝒂𝒅𝒚

𝑻𝒂𝒊
𝒄𝒐𝒍𝒅

𝑻𝒂𝒊
𝒑𝒓𝒐𝒗

𝒕𝒔𝒄𝒉𝒆𝒅

𝑇𝑎𝑖
𝑝𝑟𝑒𝑑

𝑻𝒂𝒊
𝒔𝒕𝒂𝒓𝒕

Fig. 5: Timeline illustration for modeling T provai .

5.1 Modeling the container provisioning time T provai

Mathematical formulation. T provai specifies the action con-
tainer provisioning time for ai, which can either be a
positive value or zero. Specifically, if we start the action
container(s) on demand (e.g., start c11 at teventa1 as in Fig. 2),
T provai equals to the cold-start time of the action container(s).
On the other hand, with the help of sensor value predictors,
our scheduler is able to “foresee” the arrival time of ai.
Ideally, T provai can be reduced to zero as we can pre-start
the action container(s).

To formally model T provai , as shown in Fig. 5, there are
two cases, i.e., the action container (cij) are started before
and after the estimated trigger event. Within a typical Ischedt

that begins at tsched, the predictor reports that the trigger
event will happen at teventai in T predai with an error of ∆T predai .
EdgeRuler scheduler decides to start cij after T startai at tstartai .
cij are ready to execute actions (i.e., actually run the IoT
program) after T coldai at treadyai . Given the above description,
we can derive directly from Fig. 5 that:

T prov
ai

= max[T start
ai

+ T cold
ai

− (T pred
ai

+∆T pred
ai

), 0]. (7)

Here, the zero value is taken only when it is the first case
and T provai is less than or equal to zero. Note that Eq. 7 holds
regardless of whether ∆T predai is positive or negative.

Nevertheless, the above estimation of T provai relies heav-
ily on the accuracy of sensor value predictors, which in turn
asks for an accurate estimation of ∆T predai .

Online sensor value prediction based on streamified
DBP. Before estimating the prediction error, we first need to
decide the prediction models to use in EdgeRuler. Sensor
value prediction has been a well-explored area since the
early days of wireless sensor networks [25]. There are many
common techniques to support predictive-based scheduling
[26]–[29], [29], [30]. To meet our design goals, we choose to
use the Derivative Based Prediction (DBP) model [31], [32].
DBP is an online prediction model (adaptive) that has many
parameters to tune (configurable) and more importantly, its
retraining and inference overhead is very small (lightweight).

Fig. 6 shows the essence of the DBP model. During the
training phase, the model takes in m samples and uses the
average of l edge points at the beginning and the end to
calculate the slope δ. During the inference phase, the model
keeps generating estimated values until there are consecu-
tive εT samples that deviate from the ground truth by more
than εV , which will then trigger a retraining process.

However, in our scenario, DBP is not directly applicable
for the following three reasons. (1) The original DBP is used
to predict sensor values instead of the time interval for the
next trigger event (i.e., T predai) as we need. (2) We can not

Value

Time

Training Phase Inference Phase

learning window 𝑚

edge
points

𝑙

edge

points

𝑙 𝛿

ground truth prediction error

v
a

lu
e

 t
o

le
ra

n
c
e

 𝜀
𝑉

Trigger
retraining!

horizon ℎ

time tolerance 𝜀𝑇

Fig. 6: The essence of the DBP model.

control the prediction horizon. (3) The brute-force retraining
limits the scalability especially when the frequency scales
up.

Accordingly, we make the following three modifications
based on the original DBP model. (1) We use δ to estimate
T predai , i.e., T predai = |cur value − target|/δ. (2) To provide
more adaptability, we add the prediction horizon h in DBP
(see Fig. 6). This is especially helpful for EdgeRuler sched-
uler to tune ∆T predai and bootstrap the process of T predai esti-
mation as we can use traditional divide and conquer method
such as binary search to reduce the number of inference
times. (3) Traditionally, when retraining is triggered, DBP
just recalculates δ with the updated 2 · l samples, which
may cause much redundant computation. Inspired by the
idea of stream computing [33], we build a suffix sum array
over the m samples and keep updating it at runtime. When
retraining, we can reuse the suffix sum in the array and
reduce the overhead.

Modeling the prediction error ∆T predai . Even online
updated predictors can hardly be 100% accurate. It is impor-
tant that we have the right method to model ∆T predai . One
popular method is to use probabilistic analysis [10], [34],
i.e., instead of giving precise values of the time estimation
error, they use estimations with a probability. One line of
work builds mathematical models with thorough proof. But
they are not directly applicable as they usually pose hard
assumptions on the task and jobs [34]. Heo et al. [10], on
the other hand, design a maximum normalized sensor value
gradient (MNSVG) model that builds distributions with
history IoT data, which is more suitable in our scenario.

Inspired by MNSVG, we propose a maximum normal-
ized time gradient (MNTG) model that calculates a probabil-
ity of a maximum normalized ∆T pred after a given predictor
horizon using the history data. It takes four steps to build an
MNTG model for a sensor. First, we group the history data
into subsets according to the parameters ψ of the predictors,
where ψ = ⟨m, l, εT , εV , δ⟩. The intuition here is that the
online updated DBP models can fit in for highly dynamic
sensor values. This grouping helps to characterize the data
fluctuations for a typical time period. Traditional MNSVG
uses all the history data, which can impair the estimation
when there is a relatively large ∆δ within a time period.

Second, for each subset of history data, we calculate
maximum normalized time gradients over typical predictor
horizons at a certain time point, t0, by

∆T pred(h = t− t0) = max
t0≤t′≤t

|T eventt′ − T predt0 |
|T predt0 |

.

IEEE TRANSACTIONS ON MOBILE COMPUTING 6

Third, we generate a multiset, Sψ,h, that represents a
distribution of maximum normalized time gradients over
different time points from ts to te for a certain prediction
horizon, h.

Sψ,h = {∆T pred(∆tf = (tf + h)− tf)|ts ≤ tf ≤ te}.

Finally, we generate a probability function about a max-
imum normalized time gradient after a given predictor
horizon, p(∆T pred|h).

p(∆T pred|h) = |{T
pred|T pred = ∆T pred, T pred ∈ Sψ,h}|

|Sψ,h|
.

The probability function will be used by the scheduler
to analyze the relationship between the horizon and the
performance of the predictor. Note that our scheduler uses
the prediction and error modeling methods as a black box,
EdgeRuler can seamlessly use other ones [35]–[38].

5.2 Modeling the action execution time T execai

Another important part in Eq. 1 is T execai , which is highly
correlated with the allocated computing resources. Existing
works employ many well-established methods [39]–[41].
However, the above works require tons of offline sampling
and thus can hardly be adaptable to highly dynamic context
changes (e.g., hardware and computational intensity).

EdgeRuler, on the other hand, prefers white-box model-
ing methods to reduce the overhead of sampling, (re-)fitting,
inference, and model parameters. Specifically, we adopt a re-
cent solution proposed in StepConf [12], which leverages an
exponential function and an inverse proportional function
to model the relationship between computing resources and
execution latency.

T exec
cij

=

{
(αj,1 · γ̄j + βj,1)e

−αj,2·min(bjk,rjk) + ϕj,1, case 1,
αj,2·γ̄j

θs·min(bjk,rjk)+βj,2
+ ϕj,2, case 2.

(8)

Here, αj,1, αj,2, βj,1, βj,1, ϕj,1, ϕj,2 are model parame-
ters. min(bjk, rjk) indicates the speed up ratio, where bjk is
the upper bound and rjk is the input variable for a resource
type. Case 1 explicitly considers multi-core execution, while
Case 2 is more appropriate for single-core execution. Taking
CPU as an example, if the program running in the action
container is multi-core friendly, the scheduler will choose to
follow case 1 and otherwise use the formula in case 2.

Similar to §5.1, it is hard to build 100% accurate perfor-
mance models. We adopt the same method in the previous
subsection to build a probability model of ∆T est.

As the accuracy of the estimation depends on the un-
derlying workload, hardware situations, and other com-
putation contexts, there is no such universal method that
works perfectly in all cases. Therefore, EdgeRuler exposes
standard interfaces through which developers can imple-
ment their own time estimation methods that best fit their
applications. They can either use more precise algorithms
like sparse polynomial regression [42] or more sophisticated
infrastructure like Mantis [43] that can automatically extract
performance-relevant features through program analysis.

Algorithm 1: Optimal scheduling algorithm

Input: Isched, Ravail,Tpred
′
,Ctriggered,D,M, Obj, τ, ι

Output: Tstart∗,Ralloc∗
1 begin
2 sort Ctriggered by Tpred

′
in asc. order

3 Cascade loops of all c ∈ Ctriggered:
4 initialize obj, T start∗c ,Ralloc∗
5 t← 0
6 while t ≤ Isched do
7 T startc ← t
8 Cal T provc as Eq.7
9 r ← 0

10 while r ≤ Ravail do
11 T execc ←Mc(r)
12 if T provc + T execc < Dc &&

∑
Ralloc <

Ravail && obj > Obj(Ralloc) then
13 obj ← Obj(Ralloc)
14 Tstart∗ ← Tstart ∪ T start∗c

15 Ralloc∗ ← Ralloc ∪Ralloc∗c

16 r ← r + ι

17 t← t+ τ

18 return Tstart∗,Ralloc∗

6 PROGRESSIVE ONLINE SCHEDULING ALGO-
RITHM BASED ON A DYNAMIC MERGING CACHE

Within a Isched, given the estimation of T predai , T execai , and
their errors ∆T predai , ∆T execai , EdgeRuler scheduler should
then decide T startai and Rai . In this section, we describe two
algorithms to give optimal or optimized scheduling results.

6.1 Brute-force optimal scheduling.

The basic idea of the optimal scheduling algorithm is to
exhaustively enumerate all possible combinations within a
Isched. For each triggered container c, the algorithm will
propose a possible value of T startc and Rallocc the scheduler
will use the proposal value to calculate the objective value.
After traversing all combinations of these proposal values,
the algorithm is able to find the optimal one. Algorithm 1
describes the overall workflow. EdgeRuler scheduler works
in a hybrid working mode, i.e., it will execute the schedul-
ing algorithm periodically every Isched and whenever the
prediction result in the previous intervals is updated.

Here, Tpred
′

indicates the set of (T pred-∆T pred) for each
triggered TAP. M is the set of performance model defined as
Eq. 8. Obj is the objective function defined in Eq. 3.

The algorithm largely consists of two steps, which are
executed cascadingly for all containers within a Isched (Line
3). First, given the t and r (Line 5, 9), we calculate the
corresponding T prov and T exec (Line 8, 11). Second, if the
solution meets the latency and resource constraints and the
resulting object value is smaller than the current optimal
one, we update the current solution (Lines 13-15).

IEEE TRANSACTIONS ON MOBILE COMPUTING 7

CPU Execution Time

0.5 40

1.0 20

1.5 15

2.0 10

2.5 8

Performance model

DDL Cold-start Arrival

20 2 2

20 2 20

15 2 30

Applet specs.

𝑹𝒂𝒗𝒂𝒊𝒍 𝑰𝒔𝒄𝒉𝒆𝒅 𝚲

2 30 0

System

specs.

𝒈𝒄𝟏 |𝑻𝟏
𝒔𝒕𝒂𝒓𝒕 ∈ 𝟎, 𝟐 , 𝑫𝟏: 𝟐𝟐

18 22

(2.0, 0, 12) (1.0, 0, 22)

𝒔𝟏

𝒈𝒄𝟐 | 𝑻𝟐
𝒔𝒕𝒂𝒓𝒕 ∈ 𝟏𝟖, 𝟐𝟎 , 𝑫𝟐: 𝟒𝟎

𝑻𝟏
𝒆𝒙𝒆𝒄\𝒔𝟎 (0.0, 0, 0)

10 (2.0, 0, 12)

15 (1.5, 0, 17)

20 (1.0, 0, 22)

𝑻𝟐
𝒆𝒙𝒆𝒄\𝒔𝟏 (2.0, 0, 12) (1.0, 0, 22)

10 (2.0, 18, 30) ×

15 (1.5, 18, 35) ×

20 (1.0, 18, 40) (1.0, 18, 40)

30 35 40

(2.0, 0, 12)

(2.0, 18, 30)

(2.0, 0, 12)

(1.5, 18, 35)

(1.0, 0, 22)

(1.0, 18, 40)

𝒔𝟐

𝑻𝟑
𝒔𝒕𝒂𝒓𝒕 ∈ 𝟐𝟖, 𝟐𝟎

40 40

(2.0, 0, 12)

(1.0, 18, 40)

(1.0, 0, 22)

(1.0, 18, 40)

Merge table

Pruning with bound

Reuse value

Pruned alternative(s)

To-be-merged entries

𝒈𝒄𝒊: global cache

𝒔𝒊: solution table

Fig. 7: Illustration of EdgeRuler data structures.

6.2 Optimized scheduling with a dynamic merged
cache.

Although Algorithm 1 can derive the optimal solution
for each Isched, its time complexity is prohibitively high,
which prevents it from giving timely feedback. Fortu-
nately, not all the combinations are necessary in our sce-
nario. For example, when iterating over time (Line 6 in
Algorithm 1), there is no need to search [0, Isched]. We
can use a much smaller time window [min(0, T pred

′ −
T cold),min(Isched, D−min(T exec)−T cold)]. Any other time
before the left bound will only be a waste of resources and
time after the right bound will miss the deadline. We can
apply a similar idea to prune the search space when iterating
over resources (Line 10 in Algorithm 1).

The basic idea of the proposed algorithm is iterative
pruning and reusing. Concretely, inspired by POP [44],
we first divide the original problem into sub-problems,
i.e., dealing with one container at a time and optimizing
the solution progressively. To reduce the enumeration, we
use the deadline and the available resources as pre-flight
bound. During the progressive process, similar to the idea
of dynamic programming, we build a global cache to keep
track of feasible solutions to avoid redundant calculations.

Apart from the search space pruning, there are two
enablers of the algorithm: (1) a set of data structures and
(2) a dynamic merging policy. Fig. 7 shows an illustration.
The data structures are typically two dictionaries, i.e., a
dynamically changed global cache dictionary gc and a tem-
porary solution dictionary s. Within a gc, an entry can be
uniquely indexed by a pair of s and r. Each entry is a tuple
of consumed resource r, start and end timestamp tstart,
tstart+ T cold+ T exec of a triggered action container. Within
a s, we use possible ending timestamps within gc entries as
index keys and keep the corresponding s as values.

As for the merging policy (the red dashed arrows in the
bottom part), the key point here is that if two containers do
not overlap, i.e., the latest end timestamp of the former is
smaller or equal to the earliest start timestamp of the latter,
we can safely merge the entries and only keep the ones
with better objective values. We define the policy formally
as follows.

isOverlapped(m, s1, s2) =

{
maxmj=1 T

exec
j < Tnext

i+1 ,⋂i
j=m s1[j] = s2[j].

(9)

Algorithm 2: Optimized scheduling algorithm

Input: Isched,Tpred
′
,Tcold,Ctriggered,D,M, Obj, τ, ι,Λ

Output: S
1 begin
2 Func find(r, s, T pred

′
, T cold, τ, λ):

3 t← T pred
′ − T cold

4 while t ≤ T pred + λ do
5 iteratively derive Ravail with s
6 if r < Ravail then
7 return t

8 t← t+ τ

9 return −1
10 Func merge(S, tnext):
11 if ∃im=1∃s1,s2∈S∧s1 ̸=s2(isOverlapped) then
12 S← S− {s1, s2}+ {argmin(T e2es1 , T e2es2)}
13 return S

14 sort Ctriggered by Tpred∗ − Tcold in asc. order
15 S = [(0, 0, 0)], gc = {}
16 for i← 0 to len(Ctriggered) do
17 for s ∈ S do
18 r ← 0
19 while r ≤ Ravail do
20 T execi ←Mi(r)
21 if T execi < Di then
22 tstarti ←

find(r, s, T pred
′

i , T coldi , τ,Λ[i])
23 gci[s][T

exec
i]←

(r, tstarti , tstarti + T execi)

24 r ← r + ι

25 S ← merge(Set < gci >, T
pred′

i+1 − T coldi+1)

26 return S

where Tnexti+1 is the earliest start timestamp of the i+ 1th
container, which is T pred

′

i+1 − T coldi+1 . If isOverlapped is true,
it means that in two different solutions s1, s2, the first m
containers are all finished before Tnexti+1 and the last i − m
containers are the same.

Algorithm 2 shows the overall workflow. Here, S repre-
sents the final decisions for each c ∈ Ctriggered that are com-
prised of T startc and Rallocc . Λ is a set of configurable param-
eter that can tune the search efficiency of EdgeRuler sched-
uler. For a typical action container c the corresponding entry
in Λ, λ has a range of [0, Dc −min(T execc)− T coldc].

The algorithm mainly has four steps. First, given the
T execi (Line 21), we use the deadline to filter out part of
unnecessary combinations (i.e., T execi > D[i]). Second, we
use the intuitive bound of tstarti to shrink the time searching
steps from

⌊
Isched/τ

⌋
down to

⌊
(T pred

′

i + Λ[i]− T coldi)/τ
⌋

(Line 3-8). During this process, we will iteratively check if
the resource consumption is still under control by going
through table s (Line 5). Third, we cache the feasible so-
lutions into gc (Line 23). Finally, we dynamically merge the
existing solutions with tnexti+1 and Eq. 3 to further reduce the
enumerations (Line 11).

IEEE TRANSACTIONS ON MOBILE COMPUTING 8

Recall the example in Fig. 7. There are predicted to be
three TAPs in the coming scheduling interval. They share
the same performance model (i.e., the table in the top left)
and the cold-start time. While they have different (relative)
deadlines and arrival times. At the beginning of the interval,
the system has 2 CPUs available. According to Algorithm 2,
we first process a1. We can use its deadline and Ravail to
eliminate impossible alternatives in its performance model
(the gray entries shown in the top left of Fig. 7). Then we
construct gc1 with feasible solutions. Specifically, we apply
Eq. 9 to derive s1 from gc1. We use the lower bound of
T start2 to merge the first two entries of gc1. We calculate
the objective value of gc1[s0][10] and gc1[s

0][15] according
to Eq. 3 and keep the better one in s1. After that, we
progressively process a2, a3, and retrospectively update gci
and si before getting the final decision.

6.3 Competitive Analysis

In this subsection, we thoroughly compare the optimal and
our optimized scheduling algorithm in terms of computa-
tional complexity and search space. The latter help to justify
the benefits of our algorithm.

Computational Time Complexity. We use n to refer
the number of triggered TAPs |A|. Let ⊔ be

⌊
Isched/τ

⌋
and ∇ be

⌊
Ravail/ι

⌋
. The time complexity of Algorithm

1 is O(⊔n · ∇n). Let ⊔′ be
⌊
(T cold + λ)/τ

⌋
and ∇′ be

⌊max{r|T execr ≤ Di}/ι⌋. The time complexity of Algorithm
2 is O(⊔′n · ∇′n). Obviously, ⊔′ is much smaller than ⊔,
and ∇′ is not larger than ∇. Therefore, EdgeRuler greatly
reduces the computational complexity compared to the op-
timal algorithm.

Search Space. To find Tstart and Ralloc, the total search
space is [0, Isched] and [0, Ravail], respectively. Without prior
knowledge, Algorithm 1 has to exhaustively go over the
whole space. EdgeRuler, on the other hand, takes in abun-
dant information from both cyber and physical world can
thus properly reduce the search space.

(1) Space that can be safely pruned. For finding Tstart,
the search space can be safely reduced to [min(0, T pred

′ −
T cold), D−min(T exec)−T cold]. Here, min(0, T pred

′−T cold)
indicates the earliest time point a container can be started,
which is quite possible that it takes a larger-than-zero value.
min(Isched, D −min(T exec)− T cold) refer to the latest time
point a container has to be started, or it will miss its deadline
otherwise. Similarly, we can safely prune the search space
of Ralloc with the lower/upper bound obtained from the
performance models (see Fig. 7).

(2) Space that are configurable to be pruned. As EdgeRuler is
designed to be configurable (see §3.1), we further provide the
Λ parameter. When Λ is set to maximum values, EdgeRuler
shares the same performance with the optimal algorithm
with a tiny speed-up in terms of search efficiency. If Λ is set
to other values, EdgeRuler opts to trade the optimality to
the search efficiency by skipping unlikely-to-happen cases.
In current version of EdgeRuler, we do not provide a config-
urable parameter to tune the search space of Ralloc. The main
reason is that the original space is usually much smaller than
that of the time. We can easily derive and integrate a similar
mechanism to further reduce the search space if necessary.

Final Remarks. In summary, EdgeRuler offers a config-
urable scheduling algorithm, which is optimized according
to the previous analysis of search space.

7 EVALUATION

We design our evaluation to answer the following four ques-
tions: (1) Can EdgeRuler achieve low E2E latency and dead-
line miss ratio and have better resource efficiency compared
to existing works (§7.2)? (2) Can EdgeRuler time predictor
accurately predict T pred for different IoT data modalities
(§7.3)? (3) What are the impacts of EdgeRuler configurations
(§7.3)? (4) What is the system overhead of EdgeRuler com-
ponents (§7.3)?

7.1 Methodology
Baselines. EdgeRuler includes a sensor value predictor, a
performance model, and a scheduling algorithm.

1) Predictor baselines. We compare with three baselines:
ML-based models, RT-IFTTT [10], and original DBP [31].

2) Scheduling algorithm baselines. There are two schedul-
ing policies, each of which has three baselines.

(1) Container life-cycle control. (i) On-demand [45]: start
the container(s) when triggered. (ii) Always hot [4]: keep the
container(s) always alive. (iii) COracle: assume the predictor
is 100% accurate and use a brute-force method to find
the optimal start times. (2) Resource allocation. (i) Greedy
[46]: allocate maximum resources for the action container
that comes first. (ii) Conservative [47]: allocate minimum
resources for the action container that comes first. (iii) ROr-
acle: use a brute-force method to find the optimal resources.

3) E2E baselines. To give an effective E2E comparison, we
combine existing solutions and get the following two sets of
baselines: (1) (Partial) Oracle, i.e., COracle + ROracle (CoRo),
EdgeRuler life-cycle control + ROracle (ErRo), and COra-
cle + EdgeRuler resource allocation (CoEr). (2) Responsive
heuristics, i.e., On demand + Greedy (OdGr), On demand
+ Conservative (OdCs), Always hot + Greedy (AhGr), and
Always hot + Conservative (AhCs).

Datasets, workloads, and benchmarks. We leverage the
IoT sensor data collected in RT-IFTTT [10], which installs
10 physical sensors that are sampled at 1 Hz for 10 days.
Given the data, we generate TAPs with random triggers,
cold-start times, and resource requirements. We simulate
container workloads with Stress-NG [48] by varying the
number of bogo ops using the --cpu-ops flag, which is
randomly sampled in {1000, 2000, 3000, 4000, 5000}. We use
RavailCPU = 8, RavailMEM = 16, Isched = 0.1s. The events are
obtained from raw IoT data for the macro-benchmark and
arbitrarily simulated for the micro-benchmark. The average
number of events per Isched is 2. The ratio of generated
action container specifications (i.e., T cold and T exec) is ap-
proximately 1:1:1 for T cold < T exec, T cold ≈ T exec, and
T cold > T exec. The deadline of each TAP is set to 90% of its
longest T exec.

Evaluation setup. Our experiments are conducted on a
PC that is equipped with an Intel Core i7-7700 CPU @ 3.60
GHz, 16 GB DDR4 RAM, and runs on Ubuntu 22.04. The
open source components and versions we use are as follows:
Docker 20.10.21, TDengine 3.0.1.8, RabbitMQ 3.9.11, Redis
6.2.6, and Nginx 1.23.3.

IEEE TRANSACTIONS ON MOBILE COMPUTING 9

CoR
o

ErR
o

CoE
r

Edg
eR

ule
r

OdG
r

OdC
s

AhG
r

AhC
s

0

50

100
D

ea
dl

in
e

M
is

s
R

at
io

 (
%

)

0

0.005

0.01

P
ro

ce
ss

in
g

La
te

nc
y

(s
)3.89s 4.06s

Deadline Miss Ratio
Processing Latency

(a) Deadline miss ratio comparison.

CoR
o

ErR
o

CoE
r

Edg
eR

ule
r

OdG
r

OdC
s

AhG
r

AhC
s

0

1

2

3

4

E
2E

 L
at

en
cy

 (
s)

0

5

10

15

R
es

ou
rc

e
(C

P
U

 s
ec

.)

10.7 363.2 329.6

E2E Latency
Resource Usage

(b) E2E latency and resource usage comparison.

IF
TTT

RTX-IF
TTT

ER(C
lou

d)
RTX-E

R ER

10-1

100

101

102

E
2E

 L
at

en
cy

 (
s)

(c) Empirical study of E2E latency between
IFTTT, variants of RTX-IFTTT and EdgeRuler.

Fig. 8: Main results of macro-benchmark.

7.2 Macro-benchmark

Deadline miss ratio. Fig. 8a compares the deadline miss
ratio of EdgeRuler with the baselines. Note that we run
oracle solutions under a simulated environment, making
sure that they can generate decisions. Results show that
EdgeRuler has a comparable performance with oracle solu-
tions but has a dramatically lower overhead than baselines.
Here, the processing latency of ErRo and EdgeRuler is
slightly higher than that of CoRo and CoEr because the
inaccurate prediction of EdgeRuler will lead to extra trigger
events. Moreover, EdgeRuler predictor and scheduling poli-
cies are effective, which incur marginally lower the deadline
miss ratio (∼4%) compared to CoRo. As for responsive
heuristics, they have apparently low runtime overhead (less
than 1.8ms) but poor performance. This is because they
suffer long cold-start times (Od-based), consume too many
resources (Ah- and Gr-based), or easily miss deadlines (Cs-
based) because of resource shortage. Intuitively, Ah-based
solutions should have better performance compared to Od-
based ones because the former can totally get rid of cold-
start time. As Ravail is limited, if the number of trigger
events within a Isched increases, Ah-based solutions will
drain Ravail for the TAPs that triggered first without re-
leasing, leaving others to miss their deadlines. Od-based
ones, though suffer from full cold-start time, can still release
resources for TAPs that are triggered afterward and thus
have a lower deadline miss ratio.

E2E latency. Fig. 8b compares the E2E latency of
EdgeRuler with the baselines. We have the following ob-
servations. (1) EdgeRuler has a comparable performance
with oracle solutions. (2) Ah-based solutions have counter-
intuitively poor performance due to the resource shortage.
When there are multiple rules, those triggered first will
consume the resources without releasing, and those trig-
gered afterward suffer from high execution time. (3) Cs-
based solutions have longer latency because they allocate
just enough resources for execution. (4) Od-based solutions
suffer from the cold-start time, resulting in higher average
E2E latency.

Empirical study. We conduct an empirical study to eval-
uate EdgeRuler performance in real-world settings with
IFTTT and RTX-IFTTT [7]. To strike a fair comparison, we:
(1) deploy EdgeRuler to the cloud, i.e., ER(Cloud), and
connect RTX to EdgeRuler backend without the scheduler
support (RTX-ER); (2) use a simple lamp rule: “IF lamp A is

turned on THEN turn on lamp B” as the benchmark because
RTX can only facilitate device trigger event identification.
Fig. 8c shows the results. EdgeRuler and its variant can
reduce an average of 89.1% and 68.4% latency compared
to cloud and edge baselines. The main reason for the high
latency of IFTTT is its long polling interval. RTX-IFTTT
alleviates this part by using the real-time trigger update API.
RTX-ER can reduce the E2E latency as the backend locates at
the edge. EdgeRuler variants can further reduce the latency
by appropriately allocating resources.

Resource usage. We use the consumed CPU volume, i.e.,
CPU core(s) · time as the metric for evaluating resource
usage. E.g., using 4 CPUs for 10 seconds result in 40
CPU seconds consumption. Fig. 8b compares the resource
usage of EdgeRuler with the baselines. Results show that
EdgeRuler has a comparable performance with the ora-
cle solutions. Although OdGr and OdCs consume slightly
smaller resources, they suffer from higher E2E latency and
deadline miss ratio. Ah-based solutions, as expected, con-
sume a much higher volume of resources as they keep the
container always alive.

7.3 Micro-benchmark
Predictor performance. Predictors play an important role in
container life-cycle control. We compare EdgeRuler solution
with predictor baselines in §7.1. We use MLcyb and MLphy

to denote machine learning models that predict event occur-
rence time or raw sensor value. The DBP∗ here has been ap-
plied the three modifications and EdgeRuler further adds the
error model. Fig. 9a shows the results. We have three main
observations. (1) MLphy performs consistently better than
MLcyb, the reason of which is that MLphy can extract more
information from the physical world. (2) Online predictors
(DBP∗, EdgeRuler) perform consistently better than offline
ones (others). This is an obvious trade-off between accuracy
and retraining overhead. We show later that this overhead
is negligible. (3) RT-IFTTT performs poorly. The high mean
absolute error comes from its conservative strategy (with an
event miss ratio of 0.1), which leads to a too-early T start.
The high prediction latency is due to its large distribution,
which requires exhaustive searching before getting a result.

Impacts of hyper-parameters. As EdgeRuler is designed
to be configurable, there are a bunch of hyper-parameters for
users to tune. We cannot go through all the parameters for
the page limit. Fortunately, the impact of some parameters

IEEE TRANSACTIONS ON MOBILE COMPUTING 10

ML
cyb

ML
phy

DBP
*

EdgeRuler

RT-IF
TTT

0

50

100

150

200
M

ea
n

A
bs

ol
ut

e
E

rr
or

 (
s)

0

0.5

1

1.5

2

P
ro

ce
ss

in
g

La
te

nc
y

(s
)10-5

7.12s 6.55s

1.04s

Mean Absolute Error
Processing Latency

(a) Predictor performance comparison.

0 5 10 15

Isched (s)

5.5

6

6.5

E
2E

 L
at

en
cy

 (
s)

0 5 10 15
 (s)

5.4

5.8

6.2

E
2E

 L
at

en
cy

 (
s)

(b) Impact of hyper-parameters.

1 2 3 4 5 6
of Event Per Horizon

0

5

10

15

E
2E

 L
at

en
cy

 (
s)

Process
Container (OdEr)
Container (ErGr)
Container (ER)

(c) Scalability comparison.

Fig. 9: Main results of micro-benchmark.

of rules: 2

0 1 2 3 4 5 6 7 8 9

9
8
7
6
5
4
3
2
1
0C

ol
d-

st
ar

t T
im

e
(s

)

of rules: 4

0 1 2 3 4 5 6 7 8 9
Execution Latency Range (s)

of rules: 6

0 1 2 3 4 5 6 7 8 9

AhCs ER AhGr|AhCs OdGr|ER OdGr|OdCs|ER

Fig. 10: Impacts of cold-start time, execution latency range,
and the number of rules.

can be straightforward to derive, e.g., a smaller τ will
obtain more accurate results at a cost of longer solving time.
Moreover, the DBP paper has covered the discussion of its
parameters [31], [32]. So we focus on the analysis of Isched

and Λ. Fig. 9b shows the results. A larger Isched can gener-
ally yield a better performance because of the inclusion of
more information. However, sometimes the latency counter-
intuitively increases with the Isched because of the cross-
interval cases. The latency decreases as Λ increases. It is
interesting that sometimes the latency remains unchanged
as Λ increases, which is because the spared time is not
enough to include more TAPs. Note that the computation
overhead of the scheduler will go up with the Λ, we should
find a sweet point in between.

Scalability analysis. EdgeRuler uses containers as the
basic execution unit instead of processes for scalability.
Fig. 9c shows the comparison results. We can see that
EdgeRuler generally outperforms the process-based solu-
tion. This is because TAP execution will queue up after
a certain threshold for the latter solution, resulting in a
higher E2E latency. To further evaluate the effectiveness of
EdgeRuler, we also implement OdEr and ErGr. We can see
that only part of the EdgeRuler solution is not enough to
alleviate the overhead of using containers.

Impacts of the cold-start time (CT), the execution
latency range (ELR), and the number of rules. The evalua-
tion results are highly correlated with the real-world work-
loads/traces, which are quite scarce in the containerized
rule engine scenario. To evaluate EdgeRuler and the base-
lines more comprehensively, we vary the CT, ELR, as well
as the number of rules and run simulations to unveil the
performance. Fig. 10 shows the results. The color of each cell
indicates the best solution(s) under the (ELR, CT) setting.

TABLE 2: The overhead of EdgeRuler.

Module Resource Consumption Latency (ms)CPU (Core) Mem. (MB)
Predictor 0.18 0.46 <0.01

Perf. Model 0.06 <<0.01 0.06
Scheduler 0.42 79.4 3.7
Runtime 0.02 453.4 NaN

We have the following observations. (1) Ah-based solutions
perform better as the CT increases when the ELR is small.
This is because they can totally get rid of CT but will suffer
when the TAP requires more resources (larger ELR). (2) Od-
based solutions perform well when the CT is small and can
handle various ELR conditions. (3) EdgeRuler performs well
in most cases and is capable of handling more situations.

System overhead. TABLE 2 shows the overhead of
EdgeRuler. When idle, the EdgeRuler runtime consumes
about 1.6% CPU and ∼450 MB memory, which we believe
is acceptable for modern edge cloud platforms. With work-
loads, it appears that CPU consumption can rise to 0.6%, but
with negligible time spent (<3.7ms). Overall, EdgeRuler is
a lightweight solution that can be deployed in large-scale
containerized IoT edge cloud platforms readily.

8 RELATED WORK

Optimization for IoT rule engines: As an important in-
frastructure for IoT systems, there exist a wide range of
research works that optimize rule engines. One important
aspect is the real-time guarantee. IFTTT [6] provides real-
time APIs for users to force instance notification of sensing
value changes. RT-IFTTT [10] and TinyLink 2.0 [23] offer
an enhanced IFTTT syntax and compiler that allow users
to write their own IoT TAPs with real-time constraints
and save the energy from IoT sensors with flexible polling
intervals. RTX-IFTTT [7], on the other hand, offloads the
trigger event monitoring task from the cloud to the edge to
give real-time service. We have already shown in §7.3 that
EdgeRuler predictor performs better than that of RT-IFTTT
and TinyLink 2.0. The latter two solutions cannot be applied
in containerized IoT rule engines to improve E2E latency
for the lack of sophisticated latency models and scheduling
algorithms. RTX-IFTTT is orthogonal to EdgeRuler as it
focuses on triggers that are not based on raw IoT data.

Container cold start elimination techniques: Container
cold start is a well-known problem and there is a large
body of work to alleviate, which can roughly be classified

IEEE TRANSACTIONS ON MOBILE COMPUTING 11

into three categories: (1) Resource sharing, i.e., accelerate
start process by reusing function runtime [16], instance [49],
packages [50], and so on. (2) Optimize virtualization, i.e.,
alleviate cold-start by optimizing Docker containers [17] or
designing more lightweight virtualization techniques. (3)
Life-cycle control, i.e., circumvent cold-start by intelligently
pre-warming containers [11] or keeping hot ones alive [19].
EdgeRuler solution can be regarded as the third category but
gives better results in cold-start elimination by leveraging
real-world information and fine-grained data sampling. The
other two techniques can also be applied in EdgeRuler to
further improve the performance of cold-start elimination.

Resource planning for containers: Existing works on
resource management for containerized workloads typically
scale resources at a coarse granularity. Some works focus
on adjusting the number of replica containers to meet ser-
vice level objectives (SLOs) or reduce costs [30], [51]–[53].
Other works attempt to allocate CPU cores to containers
but still at an integer level [12], [54], [55]. Existing con-
tainer orchestrators like K8s support fine-grained resource
allocation. However, its built-in allocator (i.e., HPA and
VPA) fails to determine the right amount of resources for
each container to optimize resource efficiency while meeting
SLOs. EdgeRulercollectively considers the container life-
cycle control and fine-grained resource allocation to strike
a good balance between E2E rule execution latency and
resource overhead.

9 CONCLUSION

Motivated by the measurement findings, we present
EdgeRuler which couples the IoT rule engine and the con-
tainer runtime to understand the action container provision-
ing time and execution time to shorten the service response
latency by proactive life-cycle control and fine-grained re-
source grants. We implement and evaluate EdgeRuler on top
of production-ready open-source software according to ref-
erence design. Moreover, EdgeRuler follows a lightweight
and standard-compatible design principle, which is friendly
to deploy in edge cloud platforms for IoT applications.

ACKNOWLEDGEMENTS

We thank all the reviewers for their valuable comments
and helpful suggestions. This work is supported by the
National Natural Science Foundation of China under grant
no. 62072396 and no. 62272407, the “Pioneer” and “Lead-
ing Goose” R&D Program of Zhejiang under grant No.
2023C01033, the National Youth Talent Support Program,
the Information Technology Center and State Key Lab of
CAD&CG, Zhejiang University. Wei Dong is the correspond-
ing author.

REFERENCES

[1] SiteWhere LLC., “Rule processing microservice.” 2023, https://
sitewhere.io/docs/2.1.0/guide/microservices/rule-processing/.

[2] ThingsBoard., “What is thingsboard rule engine?” 2023,
https://thingsboard.io/docs/user-guide/rule-engine-2-0/
re-getting-started/.

[3] Kaa Enterprise., “Action automation.” 2023, https://docs.kaaiot.
io/KAA/docs/current/Features/Automation/AA/.

[4] S. Fu and S. Ratnasamy, “dspace: Composable abstractions for
smart spaces,” in Proc. of ACM SOSP, 2021, pp. 295–310.

[5] Gartner, Inc., “Predicts 2021: Building on cloud computing as the
new normal.” 2020, https://www.gartner.com/en/documents/
3994453/.

[6] IFTTT., “Ifttt - connect your apps.” 2023, https://ifttt.com/.
[7] K. Dong, Y. Zhang, Y. Zhao, D. Li, Z. Ling, W. Wu, and

X. Zhu, “Real-time execution of trigger-action connection for home
internet-of-things,” in Proc. of IEEE INFOCOM, 2022, pp. 1489–
1498.

[8] “Ifttt realtime api.” 2023, https://ifttt.com/docs/api reference#
realtime-api.

[9] J. McChesney, N. Wang, A. Tanwer, E. De Lara, and B. Varghese,
“Defog: fog computing benchmarks,” in Proc. of ACM/IEEE SEC,
2019, pp. 47–58.

[10] S. Heo, S. Song, J. Kim, and H. Kim, “Rt-ifttt: Real-time iot frame-
work with trigger condition-aware flexible polling intervals,” in
Proc. of IEEE RTSS, 2017, pp. 266–276.

[11] A. Singhvi, A. Balasubramanian, K. Houck, M. D. Shaikh,
S. Venkataraman, and A. Akella, “Atoll: A scalable low-latency
serverless platform,” in Proc. of ACM SoCC, 2021, pp. 138–152.

[12] Z. Wen, Y. Wang, and F. Liu, “Stepconf: Slo-aware dynamic re-
source configuration for serverless function workflows,” in Proc.
of IEEE INFOCOM, 2022, pp. 1868–1877.

[13] B. Hou, S. Yang, F. A. Kuipers, L. Jiao, and X. Fu, “Eavs: Edge-
assisted adaptive video streaming with fine-grained serverless
pipelines,” in Proc. of IEEE INFOCOM, 2023.

[14] K. Apicharttrisorn, J. Chen, V. Sekar, A. Rowe, and S. V. Krishna-
murthy, “Breaking edge shackles: Infrastructure-free collaborative
mobile augmented reality,” in Proc. of ACM SenSys, 2022, pp. 1–15.

[15] Y. Chen, H. Inaltekin, and M. Gorlatova, “Adaptslam: Edge-
assisted adaptive slam with resource constraints via uncertainty
minimization,” in Proc. of IEEE INFOCOM, 2023.

[16] D. Du, T. Yu, Y. Xia, B. Zang, G. Yan, C. Qin, Q. Wu, and H. Chen,
“Catalyzer: Sub-millisecond startup for serverless computing with
initialization-less booting,” in Proc. of ACM ASPLOS, 2020, pp.
467–481.

[17] J. Thalheim, P. Bhatotia, P. Fonseca, and B. Kasikci, “Cntr:
Lightweight OS containers,” in Proc. of USENIX ATC, 2018, pp.
199–212.

[18] S. Shillaker and P. Pietzuch, “Faasm: lightweight isolation for
efficient stateful serverless computing,” in Proc. of USENIX ATC,
2020, pp. 419–433.

[19] R. B. Roy, T. Patel, and D. Tiwari, “Icebreaker: Warming serverless
functions better with heterogeneity,” in Proc. of ACM ASPLOS,
2022, pp. 753–767.

[20] L. Pan, L. Wang, S. Chen, and F. Liu, “Retention-aware container
caching for serverless edge computing,” in Proc. of IEEE INFO-
COM, 2022, pp. 1069–1078.

[21] S. Chen, L. Wang, and F. Liu, “Optimal admission control mech-
anism design for time-sensitive services in edge computing,” in
Proc. of IEEE INFOCOM, 2022, pp. 1169–1178.

[22] W. Zhang, Y. Gao, and W. Dong, “Providing realtime support
for containerized edge services,” ACM Transactions on Internet
Technology, vol. 23, no. 4, pp. 1–25, 2023.

[23] G. Guan, B. Li, Y. Gao, Y. Zhang, J. Bu, and W. Dong, “Tinylink
2.0: integrating device, cloud, and client development for iot
applications,” in Proc. of ACM MobiCom, 2020, pp. 1–13.

[24] Y. Sun, T.-Y. Wu, G. Zhao, and M. Guizani, “Efficient rule en-
gine for smart building systems,” IEEE Transactions on Computers,
vol. 64, no. 6, pp. 1658–1669, 2014.

[25] G. M. Dias, B. Bellalta, and S. Oechsner, “A survey about
prediction-based data reduction in wireless sensor networks,”
ACM Computing Surveys, vol. 49, no. 3, pp. 1–35, 2016.

[26] B. Li, W. Dong, G. Guan, J. Zhang, T. Gu, J. Bu, and Y. Gao, “Queec:
Qoe-aware edge computing for iot devices under dynamic work-
loads,” ACM Transactions on Sensor Networks, vol. 17, no. 3, pp.
1–23, 2021.

[27] N. Roy, A. Dubey, and A. Gokhale, “Efficient autoscaling in the
cloud using predictive models for workload forecasting,” in Proc.
of IEEE CLOUD, 2011, pp. 500–507.

[28] A. Zhao, Q. Huang, Y. Huang, L. Zou, Z. Chen, and J. Song,
“Research on resource prediction model based on kubernetes con-
tainer auto-scaling technology,” in IOP Conference Series: Materials
Science and Engineering, vol. 569, no. 5, 2019, p. 052092.

IEEE TRANSACTIONS ON MOBILE COMPUTING 12

[29] D. Janardhanan and E. Barrett, “Cpu workload forecasting of
machines in data centers using lstm recurrent neural networks
and arima models,” in Proc. of IEEE ICITST, 2017, pp. 55–60.

[30] C. Zhang, M. Yu, W. Wang, and F. Yan, “Mark: Exploiting cloud
services for cost-effective, slo-aware machine learning inference
serving,” in Proc. of USNIX ATC, 2019, pp. 1049–1062.

[31] U. Raza, A. Camerra, A. L. Murphy, T. Palpanas, and G. P.
Picco, “What does model-driven data acquisition really achieve
in wireless sensor networks?” in Proc. of IEEE PerCom, 2012, pp.
85–94.

[32] ——, “Practical data prediction for real-world wireless sensor
networks,” IEEE Transactions on Knowledge and Data Engineering,
vol. 27, no. 8, pp. 2231–2244, 2015.

[33] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J.
Fernández-Moctezuma, R. Lax, S. McVeety, D. Mills, F. Perry,
E. Schmidt et al., “The dataflow model: A practical approach to bal-
ancing correctness, latency, and cost in massive-scale, unbounded,
out-of-order data processing,” Proceedings of the VLDB Endowment,
vol. 8, no. 12, 2015.

[34] F. Marković, T. Nolte, and A. V. Papadopoulos, “Analytical ap-
proximations in probabilistic analysis of real-time systems,” in
Proc. of IEEE RTSS, 2022, pp. 158–171.

[35] T. B. Matos, A. Brayner, and J. E. B. Maia, “Towards in-network
data prediction in wireless sensor networks,” in Proc. of ACM SAC,
2010, pp. 592–596.

[36] H. Jiang, S. Jin, and C. Wang, “Prediction or not? an energy-
efficient framework for clustering-based data collection in wireless
sensor networks,” IEEE Transactions on Parallel and Distributed
Systems, vol. 22, no. 6, pp. 1064–1071, 2010.

[37] Y.-A. Le Borgne, S. Santini, and G. Bontempi, “Adaptive model
selection for time series prediction in wireless sensor networks,”
Elsevier Signal Processing, vol. 87, no. 12, pp. 3010–3020, 2007.

[38] Y. Gao, W. Dong, H. Huang, J. Bu, C. Chen, M. Xia, and X. Liu,
“Whom to blame? automatic diagnosis of performance bottlenecks
on smartphones,” IEEE Transactions on Mobile Computing, vol. 16,
no. 6, pp. 1773–1785, 2016.

[39] M. Zhang, J. Cao, L. Yang, L. Zhang, Y. Sahni, and S. Jiang,
“Ents: An edge-native task scheduling system for collaborative
edge computing,” in Proc. of IEEE/ACM SEC, 2022, pp. 149–161.

[40] K. Ye, Y. Kou, C. Lu, Y. Wang, and C.-Z. Xu, “Modeling appli-
cation performance in docker containers using machine learning
techniques,” in Proc. of IEEE ICPADS, 2018, pp. 1–6.

[41] Y. Zhang, W. Hua, Z. Zhou, G. E. Suh, and C. Delimitrou,
“Sinan: Ml-based and qos-aware resource management for cloud
microservices,” in Proc. of ACM ASPLOS, 2021, pp. 167–181.

[42] L. Huang, J. Jia, B. Yu, B.-G. Chun, P. Maniatis, and M. Naik,
“Predicting execution time of computer programs using sparse
polynomial regression,” in Proc. of NeurIPS, 2010, pp. 883–891.

[43] B.-G. Chun, L. Huang, S. Lee, P. Maniatis, and M. Naik, “Mantis:
Predicting system performance through program analysis and
modeling,” arXiv preprint arXiv:1010.0019, 2010.

[44] D. Narayanan, F. Kazhamiaka, F. Abuzaid, P. Kraft, A. Agrawal,
S. Kandula, S. Boyd, and M. Zaharia, “Solving large-scale granular
resource allocation problems efficiently with pop,” in Proc. of ACM
SOSP, 2021, pp. 521–537.

[45] T. Leesatapornwongsa, A. Sengupta, M. S. Ardekani, G. Petri,
and C. A. Stuardo, “Transactuations: Where transactions meet the
physical world,” ACM Transactions on Computer Systems, vol. 36,
no. 4, pp. 1–31, 2020.

[46] “Assign cpu resources to containers and pods.” 2023,
https://kubernetes.io/docs/tasks/configure-pod-container/
assign-cpu-resource/#if-you-do-not-specify-a-cpu-limit.

[47] X. Chen, Q. Shi, L. Yang, and J. Xu, “Thriftyedge: Resource-
efficient edge computing for intelligent iot applications,” IEEE
Network, vol. 32, no. 1, pp. 61–65, 2018.

[48] C. King, “stress-ng.” 2023, https://github.com/ColinIanKing/
stress-ng/tree/master.

[49] I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck,
P. Aditya, and V. Hilt, “SAND: Towards high-performance server-
less computing,” in Proc. of USENIX ATC, 2018, pp. 923–935.

[50] Z. Li, L. Guo, Q. Chen, J. Cheng, C. Xu, D. Zeng, Z. Song, T. Ma,
Y. Yang, C. Li et al., “Help rather than recycle: Alleviating cold
startup in serverless computing through Inter-Function container
sharing,” in Proc. of USENIX ATC, 2022, pp. 69–84.

[51] G. Yu, P. Chen, and Z. Zheng, “Microscaler: Automatic scaling for
microservices with an online learning approach,” in Proc. of IEEE
ICWS, 2019, pp. 68–75.

[52] J. R. Gunasekaran, P. Thinakaran, N. C. Nachiappan, M. T. Kan-
demir, and C. R. Das, “Fifer: Tackling resource underutilization in
the serverless era,” in Proc. of ACM/IFIP/USENIX Middleware, 2020,
pp. 280–295.

[53] X. Shang, Y. Mao, Y. Liu, Y. Huang, Z. Liu, and Y. Yang, “Online
container scheduling for data-intensive applications in serverless
edge computing,” in Proc. of IEEE INFOCOM, 2023.

[54] Y. Han, S. Shen, X. Wang, S. Wang, and V. C. Leung, “Tai-
lored learning-based scheduling for kubernetes-oriented edge-
cloud system,” in Proc. of IEEE INFOCOM, 2021, pp. 1–10.

[55] T. Ouyang, K. Zhao, X. Zhang, Z. Zhou, and X. Chen, “Dynamic
edge-centric resource provisioning for online and offline services
co-location,” in Proc. of IEEE INFOCOM, 2023.

Wenzhao Zhang received the BS degree from
the college of Computer Science and Engineer-
ing, Northeastern University of China in 2018.
He received the PhD degree from the College
of Computer Science and Technology, Zhejiang
University in 2023. His research interests include
Internet of Things and edge computing.

Yixiao Teng received the BS degree from the
college of Computer Science and Engineering,
Nanjing University of Science and Technology in
2022. She is currently working toward a Mas-
ter degree in the College of Computer Sci-
ence and Technology, Zhejiang University. Her
research interests include edge computing and
blockchain.

Yi Gao received the BS and PhD degrees from
Zhejiang University, in 2009 and 2014, respec-
tively. He is currently a research assistant profes-
sor with Zhejiang University, China. From 2015
to 2016, he visited McGill University as a visiting
scholar. His research interests include network
measurement, sensor networks, and Internet of
Things.

Wei Dong received the BS and PhD degrees
from the College of Computer Science, Zhejiang
University, China, in 2005 and 2011, respec-
tively. He is currently a full professor in the Col-
lege of Computer Science, Zhejiang University,
China. His research interests include Internet of
Things and sensor networks, wireless and mo-
bile computing, and network measurement.

