IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 14, NO. 8, AUGUST 2024

Elastic DNN Inference with Unpredictable Exit in
Edge Computing

Jiaming Huang, Yi Gao Member, IEEE, Wei Dong Member, IEEE
College of Computer Science, Zhejiang University
Email: {huangjm, gaoyi, dongw } @zju.edu.cn

Abstract—Multi-exit neural networks have gained popularity
in edge computing to leverage the computing power of diverse
devices. However, real-time tasks in edge applications often face
frequent unpredictable exits caused by power outages or high-
priority preemptions, which have been largely overlooked by
multi-exit models. To address this challenge, it is crucial to
determine the appropriate exit point in the multi-exit model
to ensure desirable results during unpredictable exits. In this
paper, we propose EINet, a sample-wise planner for real-time
multi-exit deep neural networks. EINet enables efficient Elastic
Inference with unpredictable exits while ensuring best-effort
accuracy on various edge platforms. Our approach involves
partitioning a trained deep neural network into multiple blocks,
each with its exit. Furthermore, EINet utilizes block-wise model
profiles, which include accuracy and inference time information
for each block. By leveraging these profiles, EINet dynamically
determines the optimal exit plan for each sample during the
inference process. We introduce Confidence Score Predictors to
adapt to the unique characteristics of input samples and employ
the Search Engine to efficiently find near-optimal plans for
elastic inference. Extensive evaluations of EINet using multiple
deep neural networks and datasets with unpredictable exits
demonstrate its superior performance. EINet exhibits significant
accuracy improvements: 0.13%-16.5% compared to static plans,
0.79%-4.1% compared to other dynamic plans, and over 50%
compared to predictable inference in typical scenarios.

Index Terms—Multi-exit, unpredictable exit, elastic inference,
real-time DNN task, edge computing

I. INTRODUCTION

N recent years, the field of edge computing has witnessed

a proliferation of multi-exit neural networks (NNs), which
aim to synchronize computing capabilities across devices, the
edge, and the cloud [1]-[4]. Initially introduced in [5], multi-
exit NNs offer the ability to generate intermediate outputs at
early exit points, thereby enhancing the efficiency of deep neu-
ral network (DNN) inference. Subsequently, this concept has
found widespread application in cloud-edge collaboration sce-
narios. More completely, [6] categorizes dynamic inference on
multi-exit NNs into instance-wise, spatial-wise, and temporal-
wise approaches. However, existing research on multi-exit
NN fails to take into account the issue of unpredictable exit.

In real-world scenarios, edge computing applications often
involve the simultaneous execution of multiple real-time DNN
tasks [7], [8]. However, these tasks frequently encounter
unpredictable exits caused by various factors such as system
power outages, preemption by high-priority tasks such as 5G
vRAN [9], or specific user exit requests. Take, for example,
the task preemption in which, in the context of Concordia [9],

Client Edge) } preemption

1 K
L% Model¢
Previous method

5G
—_—
—
>

[5G vVRAN
J preemption

[Real-time Al task %€]—' e

| S
—

{preemption
Model

exit

Fig. 1: When high-priority tasks (e.g., 5G VRAN) preempt Al
tasks, elastic DNN inference enables early exit with results,
unlike previous methods that stop inference with no results.

—_—

iority ImeE=p>

~
>
»—
=
ﬁ & [Other workloads ...]
-_— EINet

5G vRAN tasks are considered high-priority and are allocated
dedicated computation resources, leading to the unpredictable
preemption of all other workloads. Figure 1 shows previous
methods stop inference with no results facing such unpre-
dictable exits. Surprisingly, the challenges posed by forced
exit real-time inference tasks have long been overlooked.

To tackle the challenge of unpredictable exits encountered
in practice, our objective is to ensure that DNN tasks consis-
tently yield favorable results. The literature offers numerous
techniques aimed at enhancing the efficiency and accuracy of
DNNs on edge platforms, such as model compression [10]-
[13], lightweight model design [14]-[18], CPU/GPU schedul-
ing [7], [8], [19]. Of particular relevance to our work, instance-
wise dynamic inference [5], [20]-[22] with multi-exit NNs has
shown promise in addressing the issue of unpredictable exits.
These techniques involve selecting an appropriate exit for each
instance, but they still face the problem of forced exit before
the inference finishes. Orthogonal to the aforementioned tech-
niques, we are the first to propose Elastic Inference utilizing
multi-exit models. The elastic inference enables models to
generate desirable intermediate results that remain unaffected
by time constraints, persisting until an unpredictable forced
exit occurs. To achieve this objective, it becomes critical for
multi-exit NNs to decide when and at which branches to exit.

In this paper, we present EINet, a novel sample-wise plan-
ner for real-time multi-exit NNs. It enables efficient Elastic
Inference instead of abruptly being terminated without any
result while maintaining best-effort accuracy on various edge
platforms. Unlike existing approaches, EINet acknowledges
the unpredictable nature of exit times and dynamically guides
multi-exit NNs to select branches adaptively for different
samples during the inference. However, the practical imple-
mentation of EINet entails addressing two key challenges.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 14, NO. 8, AUGUST 2024

First, how can our planner consistently guide the model
to produce desirable results before being stopped to meet
real-time demand? To accommodate the possibility of inter-
ruptions at any moment, we employ fine-grained multi-exit
NNs which are equipped with a higher number of exits. How-
ever, executing branches at each exit to preserve intermediate
results may introduce time overhead, limiting the depth of
inference and potentially compromising accuracy.To strike a
balance between inference latency and accuracy, our planner
utilizes the Search Engine to dynamically determine which
exits to execute branches based on the available information.
By selecting near-optimal exit plans, the multi-exit NNs can
skip (i.e., not execute) certain exits, saving time while still
achieving improved accuracy.

Second, how can our planner be general across different
models and platforms for diverse input samples? To gather
the information specific to different models and platforms, we
present offline Block-wise Model Profiling to obtain model
profiles. Additionally, to better adapt to the unique features
of input samples, we propose training Confidence Score
Predictors (CS-Predictors) to enhance the interpretability of
each round of inference. In summary, the combination of CS-
Predictors and model profiles enhances the generality of EINet.
During the inference, it dynamically updates the exit plan for
each sample, considering the unpredictable nature of exits.

Our main contributions can be summarized as follows:

o We introduce EINet, a sample-wise planner for efficient
elastic inference that enables real-time Al tasks to contin-
uously generate desirable results even when interrupted
unpredictably.

o We propose Block-wise Model Profiling, which allows
offline profiling of models on edge devices to understand
their characteristics. The model profiles facilitate the
training of CS-Predictors that adapt to sample features.

e We present the Search Engine, an online mechanism
that finds near-optimal exit plans to balance accuracy
and latency. Combined with trained CS-Predictors, EINet
dynamically updates exit plans until a forced exit occurs.

« We implement EINet and conduct extensive experiments
using MNIST, CIFAR-10, and CIFAR-100 datasets to
evaluate the performance of elastic inference. The results
demonstrate that for the same model on the same dataset,
our framework can improve the overall accuracy com-
pared to multiple baselines.

The rest of the paper is organized as follows: Section II
discusses related work on improving real-time DNN efficiency
in edge computing. Section III provides an overview of EINet.
The design details of the two stages in EINet are presented in
Sections IV and V. The performance evaluation is covered in
Section VI. Finally, Section VII concludes the paper.

II. RELATED WORK

In this section, we will introduce existing efforts related to
Al model inference on the edge side. These works mainly
focus on optimizing the inference procedure to make the task
complete more quickly and pursue resource efficiency.

At the resource level, several works [7], [8], [19], [23] have
focused on model partitioning and distribution across multiple

heterogeneous processors. By carefully scheduling the models,
the overall system efficiency can be enhanced.

However, achieving efficient scheduling requires accurate
knowledge of the actual inference time. Without this infor-
mation, there may still be DNN tasks that cannot obtain the
desired results due to unpredictable exits.

At the model level, many model compression techniques
have been proposed and widely used to improve inference
efficiency. Large DNN models become lightweight by pruning
[10] or quantization. Moreover, knowledge distillation [12],
[13] can retrain a lightweight model from the original DNN
model to achieve comparable accuracy. Instead of compressing
large models, many lightweight models can also be designed
directly, e.g., MobileNet [14], [15], ShuffieNet [16] and Con-
denseNet [18]. While speeding up inference time, these models
may suffer from a loss of accuracy.

Several recent approaches are focused on designing Multi-
exit NNs to allow samples to exit early during the inference.
There are two main types. The first type is to add branches
to existing models. BranchyNet [5] was the first to propose
adding branches to NNs. Then many excellent works [3],
[24]-[26] have been proposed to enhance the model inference
performance in edge scenarios. The other type is the hand-
tuned multi-exit NNs. Multi-Scaled Dense Network (MSDNet)
[22] builds on top of the DenseNet [27] architecture. It uses a
two-dimensional array of horizontal and vertical layers, which
decouples depth and feature coarseness. Later RANet [28] is
proposed as the extension of MSDNet.

Based on compressed models or designed lightweight mod-
els, many tasks can finish inference and output results shortly
before the original inference time. However, there is still a
large number of tasks that can not finish the inference and be
forced to quit. It seems that multi-exit models can ensure that
at least an intermediate result can be output when the inference
is forced to exit. However, for such unpredictable exit, making
efficient use of computing resources is critical.

At the framework level, instance-wise dynamic infer-
ence [6] has been proposed to dynamically determine the
inference path for each sample during the inference task. This
is in contrast to static inference, where both the computational
graph and model parameters remain fixed after training. The
confidence-based exit plans [5], [20], [21] tune the confidence
threshold without consuming extra computation during infer-
ence. Samples have the flexibility to exit at shallow points
without executing deeper layers. Furthermore, the learned
decision models [29], [30] determine the inference depth
for different samples right from the start. Instead of exiting
directly, approaches like GaterNet [31] and BlockDrop [32]
dynamically select specific blocks to drop based on the input
samples. Moreover, DDI [33] achieves dynamic layers and
channels, but involves complex model training processes.

However, none of the works above achieve dynamic infer-
ence from the perspective of unpredictable exit. If the exited
branch is not chosen wisely, it will still result in no output.

In conclusion, to enhance the selection of the exit branch,
we propose a novel branch-skipping-based planner. EINet op-
erates on multi-exit NNs but diverges from the aforementioned
exit planners. Instead of choosing a single branch to exit or

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 14, NO. 8, AUGUST 2024

EINet
Single-exit NNs Multi-Exit NNs
insert (Sec. IV-A)
VAN - > e
X'; branch . Ty
+ 12 13
l execution
CS-Predictors Model Profiles
Block-wise (Sec. IV-C) (Sec. IV-B)
Model CS-Profiles
Profiling -
ET-Profiles
(Sec. 1V) \L
Elastic W Search Engine
Inference Confidence Accuracy Hybrid
(Sec. V) Score List Expectation Search
A~ (Sec. V-A) (Sec. v-B)
l update
Random Pretrained Multi-Exit NN Exit Plan
Time

— -> -> > >

break
g) v ¥ v
v v v
Images \%I

Fig. 2: An overview of EINet. EINet generates model profiles
by executing multi-exit NNs on various platforms in offline
Block-wise Model Profiling (Section IV) stage. Using profiles,
it will continuously search and update plans by Search Engine
in the online Elastic Inference (Section V) stage.

i [lol] o
v

\l' guide

executing all branches, EINet continuously generates wise exit
plans that facilitate the skipping of specific branches during the
inference process. Consequently, EINet presents a distinct and
comprehensive solution for generating optimal plans in elastic
inference scenarios characterized by unpredictable exits.

III. OVERVIEW

Real-time tasks with multi-exit DNNs can exit with results
when faced with unpredictable exits forced by the platform
system or other applications. To achieve guaranteed perfor-
mance of these tasks, we propose EINet to get more accurate
results in unpredictable and limited inference time. Figure 2
shows the overview of EINet, including the offline Block-
wise Model Profiling (Section IV) stage and the online Elastic
Inference (Section V) stage.

In the Block-wise Model Profiling stage, EINet will transfer
single-exit NNs without branches into multi-exit NNs (Sec-
tion IV-A). To get offline block-wise model profiles, EINet will
execute pre-trained multi-exit NNs on a certain edge device.
The generated model profiles consist of Confidence Score pro-
files (CS-profiles) and Execution Time profiles (ET-profiles)
(Section IV-B). Note that the confidence score refers to the
maximum softmax value for class with the highest probability
generated at each branch. Using CS-profiles, the CS-Predictor
will be trained to predict the following confidence score of
each sample according to the current confidence score list
(Section IV-C). ET-profile generated at the same time will be
used in the Search Engine to search and update exit plans (i.e.

direct the multi-exit NN whether to skip or execute at each
exit to get the result) during the online inference.

In the Elastic Inference stage, for situations where real-time
tasks with multi-exit NNs will be forced to quit at a random
time, EINet can always guide them to output a reliable result
according to near-optimal exit plans. Take one input sample as
an example, when the model executes a branch, it generates
an incomplete confidence score list, which is subsequently
fed into the CS-Predictor. Later, the CS-Predictor predicts the
confidence scores for all remaining exits, enabling the creation
of a complete score list. Leveraging this list in conjunction
with the ET-profiles, each exit plan has its performance
calculated by the Accuracy Expectation algorithm (Section
V-A). To navigate the vast search space and identify the near-
optimal exit plan, the Hybrid Search algorithm (Section V-B)
is employed to explore the plan with higher performance.
Collectively, these two algorithms constitute the Search Engine
of EINet for better exit plan. Finally, the selected exit plan will
supplant the previous one, guiding the model to execute the
subsequent branches. EINet iteratively repeats this search and
update process until the inference is interrupted unpredictably.

IV. BLOCK-WISE MODEL PROFILING

In this stage, EINet can generate block-wise model profiles
by executing pre-trained multi-exit NNs. Subsequently, we
delve into the branch insertion process of EINet, which facil-
itates the conversion of conventional CNNs into fine-grained
multi-exit NNs. Moreover, we offer an elaborate account of the
captured information within both profiles, namely CS-profiles
and ET-profiles, alongside comprehensive details regarding the
design of CS-Predictors.

A. Multi-exit Neural Networks

Traditional NNs with one exit at the end cannot even provide
results when the inference is interrupted and forced to exit
unpredictably. To deal with this, a preferable solution involves
employing models with multiple exits. We mainly take CNNs
as the base NN backbones in this paper. Converting such a
given single-exit CNN into a multi-exit model includes the
main processes of selecting insertion points, branch structure
design, and branch insertion.

1) Insertion points: There are many potential insertion
points of classic model backbones. However, some of them
may not effectively leverage all available computing resources.
Concretely, if the inference terminates shortly before reaching
the subsequent exit, the computing resources allocated be-
tween the last exit and the current point remain underutilized.
To improve both computing resource utilization and task
performance, it is feasible to minimize the time between two
exits, necessitating the construction of fine-grained models.
As a result, the objective of branch insertion is to devise
fine-grained branch insertion plans. EINet has fine-grained
insertion solutions for both normal single-exit CNNs and well-
designed multi-exit models. As a result, the objective is to
find fine-grained insertion points. EINet has solutions for both
normal single-exit CNNs and well-designed multi-exit models.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 14, NO. 8, AUGUST 2024

For normal single-exit CNNs, EINet just treats each con-
volution and subsequent operators as a conv part and adds a
branch at the end of this part. One conv part and its branch are
collectively called a block. The fine-grained insertion points
are set at the end of each convolutional part. In particular,
for NNs with residuals, such as ResNet, etc., we treat each
residual unit as conv part to insert a branch at the end of it.

For well-designed multi-exit models [5], [22], [24], [25],
EINet will specifically fine-tune their structures to make them
more fine-grained. In this paper, we focus on MSDNet, the
current state-of-the-art hand-tuned multi-exit model. It consists
of multiple blocks with the same classifier each. The number
of blocks and the structure of each block are both critical
for elastic inference. The structural design of MSDNets con-
sists of three main parameters step, base and channel, and
more design details can be viewed in [22]. To avoid wasting
computing resources, the MSDNet variations we choose have
more blocks with fewer convolutional layers (i.e. step = 1, 2),
and their first block can contain an appropriate amount of
convolutional layers (i.e. base = 2,4) and input channels
(i.e. channel = 4,8,16) to tradeoff the inference accuracy
and latency. Experimental results presented in Section VI-D1
illustrate the rationality of the above fine-tuning settings.

2) Branch Structures: Since multi-exit networks should
be fine-grained, the structure of branches that need to be
inserted becomes critical. If inserting too many branches, the
fine-grained multi-exit NNs will introduce latency overhead
executing branches. To balance the inference performance and
latency, the goal is to design the appropriate structure of
branches to make fine-grained multi-exit NNs more efficient.

For consistency with the backbone, the structure of a branch
includes convolutional layers and fully connected layers. More
convolutional or fully connected layers will inevitably lead to
an increase in latency, but may not benefit accuracy. Based on
the experimental results in Section VI-D2, we decide on the
branch with one convolutional layer and two fully connected
layers. It is justified to insert respective optimal branches at
each insertion point, but the structures are varied and difficult
to exhaust. Therefore, in this paper, we only consider the same
structures to better illustrate the ability of EINet.

3) Branch insertion: Figure 3 demonstrates how EINet
turns VGG-16 into a fine-grain and efficient multi-exit VGG-
16. EINet takes each convolution and its subsequent operations
as a conv part and inserts a branch with one convolutional
layer and two fully connected layers to form a block. Inte-
grating the designed branches into the base model at insertion
points involves connecting the output of the chosen conv part
to the input of the new branch. As for training the above fine-
grained multi-exit models, model backbones are not frozen
and the training process updates the weights of models and
branches from back to front while backpropagating. Although
this approach produces a gradient accumulation that may
interfere with the preceding inference, it will have a stronger
presentation than freezing the parameters of the backbone.

B. Block-wise Model Profiles

To better understand the characteristics of multi-exit models
for guidance during the online inference, EINet does the

Conv part | Branch Classifier
1 1 1 1
Blockl ! Block2 ! Block3 ! ! Block13 !
i i i i i
1 1 1 1 1
> —> —> — . = —> FC
: i i i ! | RelU
&, : y i y i i J 1 FC
1 1
Conv i Conv E Conv E ! Conv ! ReLU
2*FC | 1 | 2*FC | 1 | 2*FC | Qe (L€
Voo A

Fig. 3: Example of turning the normal single-exit VGG-16 into
the fine-grained multi-exit VGG-16.

overall execution of these models and records their block-
wise profiles. In this section, we will introduce exactly what
is documented in the two previously mentioned profiles.

1) ET-profiles: It takes up the total inference time to
execute inserted branches, which prevents the model from
going deeper. To decide whether a branch is to be executed or
skipped, we had better find out how long it takes to execute
the model backbone and how long to execute each branch.
Thus, the execution time recorded in ET-profiles includes the
time to execute each conv part and inserted branch.

To assess the impact of block variations on execution time,
we conducted an initial test of MSDNet using 40 blocks.
Figure 4 presents the frequency distribution of execution time
for 10,000 samples within each block. Notably, the time
difference for 90% of the samples was found to be less than
0.07ms, while for 95% of the samples, the difference was
less than O.1ms. It is worth highlighting that the inference
time variation across different blocks varied within the specific
structure set by MSDNet, as illustrated in the upper right
corner of Figure 4.

Since the time to execute each block (i.e. conv part and
branch) of each sample is not widely different, EINet records
the average execution time of all testing samples inferring on
the multi-exit NN. The execution time is additionally affected
by the platform on which it is running. Thus, EINet regenerates
ET-profiles for each edge platform even with the same test
samples and multi-exit models.

In conclusion, ET-profiles record the average time to execute
all conv parts T, and all branchs T}, of a multi-exit model on
a specific edge platform, which will be used in Section V-A.

2) CS-profiles: Another important metric to be considered
is the task inference performance in finite time. To better
understand the properties of a model in terms of inference
accuracy, we can test the average accuracy of all samples.
However, though all input samples are inferred by the same
model, they are represented differently during inference. That
is, the average accuracy metric for the task is coarse-grained
for each independent sample.

Thus, we applied the confidence score list for each sample
at the branch instead of average accuracy, as the example
shown in the Labels column of the table in Figure 5. The
confidence score here refers to the maximum softmax value
for class with the highest probability generated at each branch
during the inference. For each model, we can generate such
a series of confidence lists for all samples, thereby forming
CS-profiles. Since the generation of confidence scores is

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 14, NO. 8, AUGUST 2024

[95% —— 90% == |

T
3 *E y MSDNet_40blocks
e AN
€ 251 SoTso- - [reo 0. (ke
; b So@ e - @tesh ioio—:@ ‘o 4o
g 2r = > e - =)
c
Ee]
5151 Bl
o} EEEEEEEEE Y
w 1+ - |
ssssssssssste
054 ! I ! | | ecpenasBoasss
0 5 10 15 20 25 30 35 40
Blocks

Fig. 4: The execution time of 10,000 samples running on
MSDNet. The gap between 90% samples is less than 0.07ms
and the gap between 95% samples is less than 0.1ms.

platform-independent, CS-profiles can be directly generated by
specifying the model and input samples and not change with
platforms. When confidence score lists have been generated,
they can be subsequently used to build training datasets for
training block-wise CS-Predictors in Section IV-C.

Having captured all pertinent information within ET-profiles
and CS-profiles, the process of searching for and updating the
near-optimal exit plan will be elaborated upon in Section V.

C. Confidence Score Predictors

To better understand the features of input samples and track
the representation in the inference process, we propose to train
block-wise CS-Predictors. When a multi-exit NN obtains an
inference result at any branch, the corresponding CS-Predictor
will be called to execute predicting confidence scores of all
the following branches. Such a prediction informs the decision
of EINet on which the following branch to task as an exit,
which will be detailed in Section V-A. In this section, we will
introduce the construction of training sets using CS-profiles,
as well as the design and training details of CS-Predictors.

1) Datasets construction: To train CS-Predictors, training
datasets including data and labels are indispensable. What we
need is exactly the confidence score information recorded in
CS-profiles. The right table in Figure 5 showcases the Labels
representing the confidence scores of all exits. The Training
data consists of confidence scores at the current and previous
exits for a given sample, which can be derived from the
Labels. In the corresponding label list, the scores at subsequent
unexecuted exits are set to 0. For instance, considering a three-
exit model depicted in Figure 5, each input sample corresponds
to two data pieces, both sharing the same label.

In summary, the CS-Predictors leverage the datasets derived
from CS-profiles during their training phase, thereby enabling
them to proficiently predict confidence scores.

2) Model structure: Since CS-Predictors will be called
multiple times during inference, they must be lightweight to
reduce the additional time overhead of prediction.

Since both training data and labels are one-dimensional and
their length is the number of exit branches, CS-Predictors
can be built from lightweight fully connected layers without

\:,—:» [— ! ID Training data Labels
1
sample_0 -+ Lo || sampleo_o | [51.26,0,01 | [51.26,86.02, 99.99]
b b e e e e o e e e
Sample0_1 | [51.26, 86.02, 0]| [51.26, 86.02, 99.99]
[51.26, 0, 0]
Samplca.0 Sample1 0 | [78.77,0,0] | [78.77, 99.99, 100.0]
Sample1_1 | [78.77, 99.99, 0] [78.77, 99.99, 100.0]
[51.26, 86.02, 0]
Sampleo_l [e, e, e] [e, e, e]

Fig. 5: Construction of training datasets using CS-profiles for
the CS-Predictor of a three-exit NN.

Fig. 6: Using masks for variable length of inference outputs.

convolutions. The detailed prediction structure includes the
input layer, one hidden layer, and the output layer, which is
shown as the model on the left in Figure 6. Since the scale
of fully connected layers is crucial for balancing prediction
accuracy and time, we assign the input and output size of the
hidden layer to be 2,048 or 1,024 for models with around 30
branches, and 256 or 128 for models with fewer branches.
Moreover, we assign ReLU and dropout layers following the
input and hidden layers to improve the model robustness.

During the inference of ME-NNs, the length of output re-
sults prefers to be variable. Because only the confidence scores
of the following unexcuted branches are worth predicting. To
achieve variable length outputs, we introduce a binary mask
outside the model to update the outputs:

O =0OM+ LM, (1)

where O is the inference output of the model, L is the
confidence scores generated by past exits, M is a binary mask
list that sets past exits be 0, and the rest exits to be 1, and
M changed the value of 0 in M to 1, and the value of 1
to 0. Figure 6 shows the detail of the Mask and Mask
performed on the outputs. The Mask is designed to extract
the predicted confidence scores of the unexecuted branches
and the Mask is to keep the already generated scores. Thus,
they collaboratively form the predicted results, which realizes
the dynamic change of the inference output length. It should
be noted that the corresponding value in Label lists may not be
available if the branch is not executed. To avoid compromising
the evaluation of the exit plan (explained in Section V-A), we
set the value of these exits to be the confidence score obtained
by the nearest previous exit.

3) Model training: To accommodate dynamically changing
outputs, we modified the loss function during model training
and added the Activation Cache mechanism during inference.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 14, NO. 8, AUGUST 2024

Based on the updated outputs shown in Equation (1), we
redefine the loss function (i.e. mean-square error, MSE) during
model training:

len(O)

> (0] - L), 2)

i=0

Lmse =

Then bring Equation (1) into Equation (2) to get the simplified
loss function:
len(O)
Lise = Y, (0, = L), 3)
1=x+1

where z indicates the model is executing at the z'" exit.

Therefore, the first = values of M are 0, and Equation (3)
can be easily derived. Based on the modified loss function
above, the predictor that can predict the confidence scores
of the following unexecuted branches will be trained for the
corresponding multi-exit NN.

4) Inference optimization: During online elastic inference,
the pre-trained CS-Predictor will be used to predict confidence
scores. However, we observe that during the inference process
of a sample, the prediction of the confidence score is incremen-
tal. Taking the input layer as an example, the transformation
can be represented as:

a1 = (W1 X + By), 4

where X is the input vector, W is the weight matrix of the in-
put layer, By is the bias vector, and f;() is the activation func-
tion. As the input vector sparsity decreases (i.e., the number of
zeros becomes less), the calculation of Equation III becomes
redundant and repeated for the confidence scores that have
been generated. To predict confidence scores incrementally,
we propose Activation Cache to cache the generated activation
further reducing the computing and latency overhead.

Whenever a new variable is added to the input vector, we
construct the sparse vector by setting all other variables to
zero to optimize computing efficiency. To keep the effect
of the activation function, we cached the activation before
each activation function layer. Whenever a new computation
is generated, it is added to the cached activation and then
passed through the activation function. Such an Activation
Cache-based incremental prediction process reduces the com-
putational overhead while decreasing the inference time.

In conclusion, EINet converts single-exit CNNs into fine-
grained multi-exit models and generates block-wise model
profiles for them. These profiles will aid the elastic inference,
including: adapting to the properties of different models on
different platforms or even training CS-Predictors to adapt to
the inference representation properties of different samples.

V. ELASTIC INFERENCE

In this section, we shift our focus to online elastic inference
stage. Search Engine is considered the most important compo-
nent in this stage. Utilizing offline ET-profiles and block-wise
CS-Predictors, it can efficiently assess each exit plan and dy-
namically select the near-optimal one in an expedited manner.
Subsequently, the selected plan supersedes the previous one

conv part
branch

to t t ‘
[[1,1,1] ¢
t | 11,1,1]
T/—/H/—/% G G
- . L0, 11
&o (=N | [0 0, 1]

0 T ; 0 T
Evenly Distribution Irregular Distribution

Fig. 7: Accuracy expectation algorithm with different time
distributions. The left is uniform and the right is irregular.

Algorithm 1 Accuracy Expectation Algorithm
Input:
1) The profiled time to run conv parts: 7;
2) The profiled time to run branches: T;
3) The confidence score of all exits: C,
4) The ‘" exit plan of all exits: P;.
Qutput:
Performance expectation F.
1: function CAL_EXP(T,, Ty, C, P;)
2: Initialize £ =0,tg=0and ¢t; =0

3: co—Co, T<T.+T,
4: for k < 1 to len(P;) do
5: t1 < t1+ Tep

6: if P;;. then

7: t1 < t1 4+ Tk

8: E + E + cobizte
9: co < Ch, tog + 11
10: end if

11: end for

12: F+ FE+ C(]T ¢

13: return F

14: end function

and directs the model inference path accordingly. To fulfill its
effectiveness, we propose the accuracy expectation algorithm
and the hybrid search algorithm.

A. Accuracy Expectation Algorithm

The accuracy expectation algorithm can evaluate the perfor-
mance of exit plans. Exit plans can be seen as a binary list
for better understanding. Bit 0 means ignore the branch and
bit 1 means execute the branch and get the inference result.

To evaluate the performance of an exit plan under unpre-
dictable exit scenarios, we propose to calculate the expectation
based on exit probability. Since the actual inference time is
unpredictable, in which inference time interval it will fall
is a probabilistic event. Taking the uniform distribution of
inference time as an example, we divide the entire profiled
time of running each convolutional part and branch into
different colored intervals as shown on the left of Figure 7. The
time of running one convolutional part and branch is labeled
t;. The confidence score during this period is the output of
the previous branch, marked as C;. Once the executing branch
produces a new result, it moves on to the next time interval
ti+1 with C;11. The following three-bit lists correspond to

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 14, NO. 8, AUGUST 2024

three different exit plans, in which 0 means do not exit. The
equation of calculating expectation is as follows:

len(C)
Cit;
E = 5
; T)

where T is the total execution time, #; is the i*" time interval
between the i*" and (i + 1) output and C; is the confidence
score of the " output. In [34], real-world cases demonstrate
that the preemption can be modeled using arbitrary curves. For
situations involving irregular time distributions as depicted on
the right of Figure 7, the area (i.e. weighted time) ratio is
employed. Just replace the ratio of the time interval ¢; and
total execution time 7' with the ratio of the integrated area
over the time interval and the total execution time.

Algorithm 1 shows the accuracy expectation algorithm
under the uniform time distribution. The ET-profile is taken as
input including T, and T}. The confidence score C' is actually
the O’ in equation (1) predicted by CS-Predictor. For a specific
exit plan P;, the algorithm iterates over each bit to check
whether the corresponding branch should execute or not (line
4). If the branch executes, the expectation can be calculated
(line 8) and the current confidence score and the elapsed time
should be recorded (line 9). For irregular time distributions,
just modify Eqution 5 as mentioned before. The evaluation
results in Section VI-C1 indicate that the performance expec-
tation closely approximates the ground truth.

B. Hybrid Search Algorithm

During the searching phase in Search Engine, the hybrid
search algorithm is to find the near-optimal plan quickly.

Since the exit plans are binary lists, if the multi-exit NN has
n exits, there will be 2™ plans. For models with fewer exits,
this number is still considerable. For a model with five exits,
the enumeration search time can be less than 1 ms. However,
for models with a large number of exits, it is challenging to
enumerate all plans because of the exponentially increased
search time. To illustrate, for a model with 40 exits, the
enumeration search time can extend up to approximately 40
days. Therefore, the enumeration may be optimal when there
are few exit plans, but it is not suitable for all models.

To address the vast search space for models with more
exits, an intuitive solution is the heuristic search. However, the
accuracy expectation algorithm is nonlinear, which aggravates
the difficulty in constructing valuation functions of the heuris-
tic search. Figure 7 illustrates that even a one-bit difference
in exit plans leads to completely different computations and
the conversion between them is non-linear and complicated.
Because when the non-output branch in a plan is changed to
output, the time interval and score for the current exit will
change. To explore this challenge, we implement the greedy
algorithm by continuously exploring plans by incrementally
increasing the number of outputs. Concretely, the Search
Engine iterates through all non-output branches and greedily
selects one to form the local optimum exit plan with the
already selected branches. This traversal and selection will
be performed until all branches are selected. Thus, the search
space, as well as time complexity, has changed from 2" to n2.

Algorithm 2 Hybrid Search Algorithm
Input:
1) All exit plans of a model: P;
2) The runtime statistics of convolutions and branches: T, Tj;
3) The confidence score of all exits: C,
4) The number of outputs for the enumeration search: m.
QOutput:
A better exit plan P’.
Pg < Enum(P,m)
Ep < CALgyp (TC, Ty, C, PE)
PO “— PE
EO “— EE
for i < m+1 to len(C) do
Pg, Eqg + Greedy(Po, Z)
if £ > Ej then
E() «— Eg, P« PG
end if
Py + Pg
: end for
: return P’

> Update

R AN A ol

—_— =

Though greedy search can find near-optimal plans in a short
time, it tends to fall into the local optimum in many cases.

To better take advantage of these two search methods in
terms of search results and time, we propose the hybrid search
algorithm, a two-stage search approach, which combines enu-
meration and greedy search. For the first few branches, we use
enumeration. When the number of branches to be searched is a
handful, the enumeration search time is considerable and the
optimal results can be guaranteed. Meanwhile, for the later
branches, we find the near-optimal exit plans employing the
greedy search to save the search time. Thus, based on this
hybrid search, EINet can be guaranteed to find the optimal
plan for the model with fewer exits and obtain the near-optimal
solution in a very short time for the model with more exits.

Algorithm 2 shows the details of the hybrid search algo-
rithm. First, the enumeration search is performed according
to the number of branches specified for enumeration (line 1).
Then the performance expectation is calculated for the optimal
exit plan obtained by the enumeration (line 2). This optimal
plan and its expectation are used as the starting point of
the greedy algorithm (lines 3-4). The greedy search performs
traversal and selection until all branches have been selected
(lines 5-11). Finally, we will get the near-optimal exit plan in
less search time. In Section VI-C, our evaluation results show
the hybrid search can always find an exit plan with higher
performance expectations under different time distributions.

In conclusion, through the utilization of the accuracy ex-
pectation algorithm and hybrid search algorithm, the Search
Engine of EINet can dynamically explore and update the exit
plan as branches are executed and produce outputs. The newly
chosen plan will guide the subsequent execution of branches
until the completion of inference or unpredictably interruptions
during online elastic inference.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 14, NO. 8, AUGUST 2024

25%-output C— 100%-output =231

50%-output ——1 EINet ——3 50%-output ——1

25%-output C— 100%-output =23

25%-output C— 100%-output 3

EINet 3 50%-output C—— EINet

T T T T T 89 [T T T T T] T T T T T 3
94 - Il 66 -
g 8r g %r S el
g 84 + g g 56 |
3 3 3
g 79 3 g 51
< < <]
74+ 46
- il
41
B.,q le R es, Flg Ms VG Ms B~A Re Fle. Ms, VG, Ms, B, Re, Fi Ms VG Ms,
X N X/ DNy CG16YISDN, lexnesn, XV, Dot CG16."SDN, Alexn 8Snets €XV Dot CG1, DN,
Nt 1605, GG76‘5E s Orqe Velype Nty 50, GG76‘556127E Crae el Nety, o150, GG76556127E Erae el

(a) MNIST

(b) CIFAR-10

(c) CIFAR-100

Fig. 8: Static exit plans on a wide variety of multi-exit NNs. EINet can achieve higher accuracy regardless of the models. For
the same model on the same dataset, EINet has about 0.13%-16.5% performance gain compared to the static exit plans.

TABLE I: Difference in Execution Time.

Algorithm Py/C Max (ms) Avg (ms) Min (ms)
Accuracy Python 0.0610 0.0594 0.0584
Expectation C 0.0003 0.0003 0.0003
Hybrid Python 4.9145 4.6599 4.3861
Search C 0.1292 0.1277 0.1267

VI. EVALUATION

In this section, we will evaluate the performance of EINet
based on its above design in two stages.

A. Datasets and Setup

Implementation. We implement EINet with PyTorch. For
offline model training and profiling, all multi-exit NNs and
their corresponding CS-Predictors are trained and executed
on a server utilizing two NVIDIA GeForce RTX-3090 GPUs
with a Core 17-10400 CPU. For online elastic inference,
we still perform validation on the same server mentioned
above. Besides, due to the time-critical nature of the Search
Engine during inference, we implement this part in C pro-
gramming language to minimize time overhead and enhance
performance. Table I shows the disparity in execution time
of the accuracy expectation and hybrid search algorithms
implemented in Python and C, respectively. Utilizing C yields
a significant speed improvement of nearly 100 times. Thus,
we invoke the calculate expectation algorithm and hybrid
search algorithm through the ctypes library during the elastic
inference, achieving nearly 100 times faster than before. The
rest of the implementation remains unchanged.

For training details, we train each multi-exit NN for 300
epochs and its CS-Predictor for 3000 epochs. We use SGD
with 0.9 momentum as the optimizer and the training learning
rates are all 0.001. For CS-Predictors, we employ gradient
clipping and dropout layer to solve the possible gradient
explosion during the backpropagation of training. And the
learning rate needs to be reduced appropriately for predictors
with smaller hidden sizes (e.g. 256) to ensure that the training
process of predictors can converge.

To simulate unpredictable exit, we randomly set the infer-
ence time for each sample within the total profiled execution
time. This randomization follows a uniform distribution.
Datasets. EINet is implemented and rigorously validated
primarily in the context of image classification tasks. The
well-established and commonly used datasets we use are the
MNIST, CIFAR-10, and CIFAR-100.

o The MNIST dataset contains 28x28 gray images, com-

posed of 60,000 training and 10,000 testing images.

e The CIFAR-10 and CIFAR-100 datasets [35] contain
32x32 RGB images, composed of 50,000 training and
10,000 testing images, corresponding to 10 and 100
classes, respectively.

We use all training images to train multi-exit NNs and
testing images to generate two profiles in the block-wise model
profiling stage. Among them, the CS-profiles can be used to
form the trainsets for training CS-Predictors.

Evaluation Metrics. Accuracy is frequently used as a metric
for recognition tasks. Unlike common scenarios, the inference
time is random and unpredictable in our scenarios. To elimi-
nate the effect of randomness on the results, we evaluate a
large number of samples multiple times to get the overall
average accuracy and regard it as the evaluation metric.

Baselines. We carefully selected diverse baselines to assess
the performance of EINet focusing on two key aspects:

(1) Comparative evaluation of a wide variety of multi-exit
models with different exit plans. This comparison aims to
validate the superior overall performance consistently achieved
by EINet, regardless of specific multi-exit NNs and exit plans.

o For models, we include B-AlexNet [5] with three exits,
FlexVGG-16 [25] with five exits, fine-grained VGG-16
with 14 exits, fine-grained ResNet-50 with six exits, and
MSDNet [22] with 21 and 40 blocks. The design of the
fine-grained models (VGG-16 and ResNet-50) follows the
guidelines outlined in Section IV-A1l, while the selection
of MSDNet variants will be introduced in Section VI-D1.

« For exit plans, we classify them into two categories based
on their inference behavior: static plans and dynamic
plans. Static plans entail predetermined exit points at
fixed percentages, such as 25%, 50%, and 100% of ex-
ecuted branches. Conversely, dynamic plans incorporate
confidence-based exit and EINet with random search.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 14, NO. 8, AUGUST 2024

TABLE II: EINet achieves an accuracy gain of up to 1.79%
compared to the theoretically optimal plans.

Datasets Models Statis(%) Ours(%)

B-AlexNet 7843 78.71 (+0.28)

ResNet-50 85.62 86.65 (+1.03)

FlexVGG-16 88.10 8823 (+0.13)

CIFAR-10 "yrsDNet2l 80.87 8111 (+0.24)
VGG-16 8808 89.12 (+0.14)

MSDNetd0 8638 86.60 (+0.22)

B-AlexNet 4640 4641 (+0.01)

ResNet-50 6273 63.29 (+0.56)

FlexVGG-16 6588 66,03 (+0.15)

CIFAR-I00 “\ropNet2] 6225 63.92 (+1.67)
VGG-16 6563 66.08 (+0.45)

MSDNetd0 66.14 67.93 (+1.79)

(2) Comparative analysis with neural networks in typical
scenarios. Given the limited consideration of unpredictable
exits in existing works, this comparison aims to quantify the
performance improvement achieved by EINet under prevalent
circumstances. We choose single-exit CNN models with only
one exit at the end, compressed models, and normal multi-exit
models without planners. Since the inference time of different
models is different, to make the comparison fair, we apply
MSDNet, the state-of-the-art, and use its adaptations as all
baselines for experimental validation.

B. Overall Accuracy Improvement

Unlike common scenarios that select a branch to exit early
or even don’t exit early, EINet, a novel sample-wise planner,
can continuously generate wise exit plans, guiding the model
to skip several branches for unpredictable exits. In this section,
we mainly conducted experiments to verify the performance
improvement of EINet from the following perspectives.

1) Static exit plans: Figure 8 (a-c) show the average
accuracy of the preselected models on MNIST, CIFAR-10,
and CIFAR-100. EINet was compared with the three static
strategies respectively. Due to the inherent limitations of
unpredictable exit, the exit accuracy falls below the ultimate
accuracy of models. In summary, EINet can achieve 0.13-
16.5% higher performance regardless of the types of multi-
exit models and datasets. It demonstrates that EINet can
dynamically customize exit plans for each input sample,
wisely selecting branches to execute for better performance.
By avoiding unnecessary branch execution, it saves overhead
and enables deeper model inference. In addition, we noticed
that increasing the number of branches for the same model
backbone can lead to improved overall accuracy.

To address the limitation of the selected regular static plans,
we generate a static optimal exit plan based on average time
and accuracy profiles. As there is no time constraint for
searching this plan, we employ enumeration to find the optimal
one. The accuracy differences between the selected plans are
presented in Table II, with EINet demonstrating an accuracy
gain of up to 1.79%. Even for models with fewer exits, there
are still minor improvements observed.

CSqp T
CSgs

Lo anNnwhs
T

Improvement (%)

EINet =31
CSgs

I | | Csge =3
1 | CSge =3
CIFAR-100 EINet mm

Rand 3

CSyy 3

Rand 238
MSDNet,, MSDNet, .

-
TR ([

'
N
T

CIFAR-10
1 1
MSDNet,, MSDNet, .

Lo
> @

Fig. 9: EINet has about 0.79%-4.1% performance gain com-
pared to other dynamic exit plans.

2) Dynamic exit plans: To evaluate the effectiveness of
dynamic exit plans, we compare them with confidence score
threshold-based plans and EINet utilizing random search meth-
ods. Figure 9 illustrates the improvement compared to the
static plan without skipping (i.e. 100% output static plan). For
two models across two datasets, EINet achieves performance
improvements ranging from approximately 1% to 4%. In
contrast to randomly selecting an exit plan, EINet leverages
the confidence characteristics of each sample to make intelli-
gent decisions. Compared with the confidence-based dynamic
strategy, EINet uses CS-Predictor to reduce the overhead of
executing branches, thereby ensuring task performance. In
addition, increasing the confidence threshold for early exit in
confidence-based dynamic plans yields better results, but they
still fall short of the improvements achieved by EINet.

3) Common neural networks: The common models here
include Classic models with only one exit, Compressed models
also with only one exit, and multi-exit NNs (ME-NNs) without
skipping any exits. Since the inference latency and final
accuracy vary with the basic models,we employ MSDNet
adaptions to achieve the same total execution time for fairness.

Figure 10 shows the performance comparison of EINet
against various common neural network techniques in four
model variations. The experiments were conducted 10 times,
and the result shows that EINet achieves remarkable improve-
ments in accuracy compared to the classic model, ranging from
40.4% to 61.5%. Because classic models with a single exit face
a significant reduction in task performance when unpredictably
preempted, as they fail to produce any results. Furthermore,
compared to compressed models where inference time is
optimized and completion is expedited, EINet still exhibits
performance enhancements ranging from 38.5% to 58.2%. In
comparison to a multi-exit model without any exit plan (100%
exit), EINet achieves a performance improvement of 0.8% to
1.5%. In addition, when comparing FlexVGG-16, fine-grained
VGG-16, as well as MSDNet with 21 and 40 blocks, it is
observed that the more fine-grained network achieves higher
accuracy on the same dataset. Since the accuracy gap of the
last exit is less than 0.5% between MSDNet with 21 and 40
blocks, the overall accuracy of the model with 40 blocks in
elastic inference is improved by approximately 5%.

C. Evalution of Search Engine

In this section, we mainly focus on the characteristics of
the Search Engine component in the elastic inference stage.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 14, NO. 8, AUGUST 2024

[Classic = Compre CJ ME-NNs =3 EINet =3 |
87 T T T = =
E 63t .
>
(8}
©
5
g 39 i
) ﬂ
NN

NN NN NN
21EciFar-100 40EciFaR-100 21Ecirar-10 40EciFaR-10

Fig. 10: EINet achieves over 50% accuracy improvement
compared to common neural networks.

[Expect 3 Truth 3]

72 T T T
S
2y

g 70

3
Q
[S]
<

0 2 4 6 8 10

Number of skipped exits evenly (Integer)

Fig. 11: The truth of accuracy and the calculated expectation
of MSDNet with 40 blocks on CIFAR-100 are very close.

1) Effect of Accuracy Expectation: The core of searching
for the exit plan is the accuracy expectation. To verify the
reasonableness of this algorithm, we compare the calculated
expectation with the truth under different exit plans.

Figure 11 shows the gap between calculated expectation
and overall ground truth. The abscissa refers to the specified
number of exits skipped uniformly by an exit plan. Since the
truth of a single sample confidence score is hard to evaluate
and each inference time is random and unpredictable. We run
MSDNet with 40 blocks on CIFAR-100 five times and take
the average as the overall accuracy. The expectation value
fluctuates above and below the truth, with overall variation
less than 0.5%. Based on above 11 plans, it can be seen
that the accuracy expectation serves as a reasonable metric
for assessing the performance of any given exit plan. Besides,
the result also shows that executing all branches is not always
optimal in elastic inference. For example, the plan to skip two
exits uniformly is better than no skipping. In addition, to adapt
to the characteristics of the input samples, exit plans better
change based on various inputs to improve overall accuracy.

In conclusion, through experiments of average accuracy,
we can conclude that the accuracy expectation algorithm can
measure the performance of an exit plan effectively.

2) Effect of Hybrid Search: We tested the hybrid search
time and expectations for different numbers of outputs for the
enumeration search on MSDNet with 40 blocks.

Figure 12 shows the performance of the hybrid search.
The vertical coordinate represents the accuracy expectation,
which is the combined results of the two search algorithms.
The horizontal coordinate represents the number of selected
branches for enumeration. As it increases, the enumeration
accuracy increases gradually, and the final search accuracy
also increases slightly. But the searching time has risen expo-

[Enum C3 Greedy C3 Time == |
715 E [T I I [I - 75

71H — / L 50
70.5 - | / L 25

70 0
1 2 3 4 5 6 7 8

Numbers of output in Enumeration (Integer)

Expectation (%)
Search time (s)

Fig. 12: Enumerating only a handful of branches and then
performing a greedy search on the remaining branches gives
the near-optimal result in an acceptable time.

nentially. Therefore, there is no need to enumerate more exits,
four or five are enough. The search time is satisfactory and
the results are near-optimal. Besides, using the greedy search
directly for models with more exits (the first column in Figure
12) may fall into the local optimum.

In conclusion, enumerating only a handful of branches and
then performing a greedy search on the remaining branches
gives the near-optimal result in an acceptable time.

3) Different time distributions: In practice, the inference
time distribution in unpredictable exit scenarios is irregular.
To better evaluate the performance of EINet in such realistic
scenarios, we choose uniform time distribution and two Gaus-
sian time distributions with the average u taken as half of
the total inference time, the o of 0.5 and 1, respectively. We
conduct experiments of four search algorithms on MSDNet
with 40 blocks. Among them, the Baseline search refers to
inference without exits, while the Random search is to find
the optimal exit plan among 10,000 randomly selected plans.

Figure 13 shows the evaluation results. Different time
distributions have minimal impact on the elastic inference
outcomes. Moreover, the hybrid search method consistently
manages to find a superior exit plan. Though the performance
of Random search seems comparable, it takes around 20 times
longer to execute. Enumeration was excluded also due to their
long search time. Although the results are expected, the actual
search results are similar according to Section VI-C1.

4) Activation cache: To optimize the inference efficiency
of CS-predictors during the elastic inference, caching mecha-
nisms are used to trade memory for inference time.

We record in Table III the inference time reduced and the
extra memory space occupied by the corresponding predictors
for different models. For small-scale predictors, it can improve
inference speed up to 3.52-4% by taking up only 1-2 KB
of storage. For large-scale predictors, it is still possible to
improve inference speed by 3.08-3.77%, only taking up more
memory spaces. It takes up only a few dozen KB at most,
which is considered acceptable.

D. Impact of multi-exit NN Design

1) Model structures: In this section, we aim to provide
clarity on our selection of MSDNet with 21 and 40 blocks.
To evaluate the design of multi-exit NNs, we consider models
with varying numbers of blocks, steps, bases, and channels,
as outlined in [22]. Results are shown in Figure 14 (a).

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 14, NO. 8, AUGUST 2024

TABLE III: Activation cache trades off a 3.08-4% inference
speedup for only a small amount of memory space.

Models Reduced time Memory
B-AlexNet 3.84% 1036B
ResNet-50 3.52% 2072B

FlexVGG-16 4.00% 2068B
MSDNet21 3.41% 8276B

VGG-16 3.77% 8248B

MSDNet40 3.08% 16544B

[Baseline @ Random 3O Greedy &3 Hybrid B3 |
68.4 - T T T |
67.6

Expectation (%)

- il S L

Evenly Gaussian(o=1) Gau33|an (o= 0 5)

Time Distribution

Fig. 13: Accuracy expectation of search methods at different
time distributions. Hybrid can always find a better exit plan.

Our objective is to achieve higher accuracy within a shorter
inference time. In the case of the same number of steps, bases,
and channels, increasing the number of blocks results in longer
inference times. However, having more exits enables more
efficient utilization of computing resources. Consequently, the
choice of the number of blocks should strike a balance, neither
too few nor too many. In our evaluation, we found that the
range of 21 to 40 blocks is nearly optimal. Since assigning
more steps leads to increased total inference time, for models
with 40 or more blocks, it is best to set the step value to
1, ensuring faster inference. Likewise, smaller values for the
base and channel parameters are preferable. Thus, we selected
MSDNet models with 21 and 40 blocks as our evaluation
models, as they align with these considerations.

2) Model branches: To assess the design of branch struc-
tures, we conducted evaluations with varying combinations of
convolutions and fully connected layers, such as one convo-
Iution and one fully connected layer, two convolutions and
one fully connected layer, and so on. The main structure of
MSDNet includes 21 blocks, 2 steps, 4 bases, and 16 channels.

The results, as depicted in Figure 14 (b), align with the
findings in [5], indicating that it is not necessary to add
multiple convolutional layers to achieve better performance.
In fact, increasing the number of convolutional layers leads
to longer inference times and may decrease accuracy. On the
other hand, adding more fully connected layers can enhance
the final accuracy, but also leads to an increase in latency.
Considering these factors, we choose a combination of one
convolutional layer and two fully connected layers that offers
a balance between inference accuracy and latency.

Discussion. While our primary focus in this paper has been
on CNN, EINet holds potential for applicability to other model
structures like RNN, Transformers, and GANs. The key con-
sideration lies in converting a single-exit model into a multi-
exit model. For instance, in the case of a Transformer-based

78 77.7
mr]‘V'f | 77.2 .
76 - B
—_ —~ 767 - B
R 75 AR
3 3
8 74 18 762]
3 17B(s2b4c16) =+~ | 3
< 73 21B(s2b4c16) 1< 757F i
21B(s1b4c16) : conv=1 fc=1
72 40B(s1b4c16) b conv=1 fc=2
40B(s1b2c16) 752 ¢ conv=1 fc=3 4
Ry 51B(s1b2c8) —+ conv=2 fc=1
61B(s1b1cd) conv=2 fc=2
70 | | | | | | | 74.7 1 1 1 | |
20 25 30 35 40 45 50 55 26 28 30 32 34 36 38
Time(ms) Time(ms)

(a) Choice of MSDNet (b) Design of branch structures

Fig. 14: The design of the branch structure and the multi-exit
model plays a pivotal role in elastic inference.

model, the placement of exit branches between blocks enables
it to be a multi-exit model. However, the specific placement
and design of these branches require further exploration and
consideration in future research.

VII. CONCLUSION

In this paper, we propose EINet, a sample-wise planner
for real-time multi-exit DNNs, which enables efficient Elastic

Inference instead of being killed while guaranteeing best-

effort accuracy. To better guide model inference, EINet profiles
multi-exit NNs and trains CS-Predictors. Using profiles and
CS-Predictors, EINet employs Search Engine to update the
near-optimal exit plan dynamically. Finally, the evaluation re-
sult shows that the overall accuracy is improved by 0.13-16.5%
compared to static plans, 0.79-4.1% compared to dynamic
plans, and over 50% compared to predictable inference in
typical scenarios. These results highlight the reliable elastic
inference with unpredictable exits achieved by EINet.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science
Foundation of China under grant No. 62272407, the “Pioneer”
and “Leading Goose” R&D Program of Zhejiang under grant
No. 2023C01033, the National Natural Science Foundation of
China under Grant No. 62072396, the National Youth Talent
Support Program. Yi Gao is the corresponding author.

REFERENCES

[1] S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Distributed deep
neural networks over the cloud, the edge and end devices,” in 2017
IEEE 37th international conference on distributed computing systems
(ICDCS). 1IEEE, 2017, pp. 328-339.
S. Laskaridis, S. I. Venieris, M. Almeida, I. Leontiadis, and N. D. Lane,
“Spinn: Synergistic progressive inference of neural networks over device
and cloud,” in Proceedings of the 26th annual international conference
on mobile computing and networking, 2020, pp. 1-15.
Z. Huang, F. Dong, D. Shen, J. Zhang, H. Wang, G. Cai, and Q. He,
“Enabling low latency edge intelligence based on multi-exit dnns in
the wild,” in 2021 IEEE 41st International Conference on Distributed
Computing Systems (ICDCS). 1EEE, 2021, pp. 729-739.
M. Ebrahimi, A. d. S. Veith, M. Gabel, and E. de Lara, “Combining
dnn partitioning and early exit,” in Proceedings of the 5th International
Workshop on Edge Systems, Analytics and Networking, 2022, pp. 25-30.

[2]

[3]

[4]

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 14, NO. 8, AUGUST 2024

[51

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(7]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Branchynet: Fast
inference via early exiting from deep neural networks,” in 2016 23rd
International Conference on Pattern Recognition (ICPR). 1EEE, 2016,
pp. 2464-2469.

Y. Han, G. Huang, S. Song, L. Yang, H. Wang, and Y. Wang, “Dynamic
neural networks: A survey,” arXiv preprint arXiv:2102.04906, 2021.

Y. Xiang and H. Kim, “Pipelined data-parallel cpu/gpu scheduling
for multi-dnn real-time inference,” in 2019 IEEE Real-Time Systems
Symposium (RTSS). 1EEE, 2019, pp. 392-405.

N. Ling, K. Wang, Y. He, G. Xing, and D. Xie, “Rt-mdl: Supporting
real-time mixed deep learning tasks on edge platforms,” in Proceedings
of the 19th ACM Conference on Embedded Networked Sensor Systems,
2021, pp. 1-14.

X. Foukas and B. Radunovic, “Concordia: teaching the 5g vran to
share compute,” in Proceedings of the 2021 ACM SIGCOMM 2021
Conference, 2021, pp. 580-596.

M. Lin, R. Ji, Y. Wang, Y. Zhang, B. Zhang, Y. Tian, and L. Shao,
“Hrank: Filter pruning using high-rank feature map,” in Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition,
2020, pp. 1529-1538.

Y. Zhang, T. Gu, and X. Zhang, “Mdldroidlite: a release-and-inhibit
control approach to resource-efficient deep neural networks on mobile
devices,” IEEE Transactions on Mobile Computing, 2021.

G. Hinton, O. Vinyals, J. Dean et al., “Distilling the knowledge in a
neural network,” arXiv preprint arXiv:1503.02531, vol. 2, no. 7, 2015.

B. B. Sau and V. N. Balasubramanian, “Deep model compres-
sion: Distilling knowledge from noisy teachers,” arXiv preprint
arXiv:1610.09650, 2016.

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 4510-4520.

X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely effi-
cient convolutional neural network for mobile devices,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 6848-6856.

N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet v2: Practical
guidelines for efficient cnn architecture design,” in Proceedings of the
European conference on computer vision (ECCV), 2018, pp. 116-131.

G. Huang, S. Liu, L. Van der Maaten, and K. Q. Weinberger, “Con-
densenet: An efficient densenet using learned group convolutions,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 2752-2761.

W. Kang, K. Lee, J. Lee, I. Shin, and H. S. Chwa, “Lalarand: Flexible
layer-by-layer cpu/gpu scheduling for real-time dnn tasks,” in 2021 I[EEE
Real-Time Systems Symposium (RTSS). 1EEE, 2021, pp. 329-341.

T. Bolukbasi, J. Wang, O. Dekel, and V. Saligrama, “Adaptive neural
networks for efficient inference,” in International Conference on Ma-
chine Learning. PMLR, 2017, pp. 527-536.

V. Bonato and C.-S. Bouganis, “Class-specific early exit design method-
ology for convolutional neural networks,” Applied Soft Computing, vol.
107, p. 107316, 2021.

G. Huang, D. Chen, T. Li, E. Wu, L. Van Der Maaten, and K. Q.
Weinberger, “Multi-scale dense convolutional networks for efficient
prediction,” in Proc. of ICLR, 2018.

S. Liu, S. Yao, X. Fu, R. Tabish, S. Yu, A. Bansal, H. Yun, L. Sha,
and T. Abdelzaher, “On removing algorithmic priority inversion from
mission-critical machine inference pipelines,” in 2020 IEEE Real-Time
Systems Symposium (RTSS). 1EEE, 2020, pp. 319-332.

S. Laskaridis, S. I. Venieris, H. Kim, and N. D. Lane, “Hapi: Hardware-
aware progressive inference,” in 2020 IEEE/ACM International Confer-
ence On Computer Aided Design (ICCAD). IEEE, 2020, pp. 1-9.

B. Fang, X. Zeng, F. Zhang, H. Xu, and M. Zhang, “Flexdnn: Input-
adaptive on-device deep learning for efficient mobile vision,” in 2020
IEEE/ACM Symposium on Edge Computing (SEC). 1EEE, 2020, pp.
84-95.

F. Dong, H. Wang, D. Shen, Z. Huang, Q. He, J. Zhang, L. Wen,
and T. Zhang, “Multi-exit dnn inference acceleration based on multi-
dimensional optimization for edge intelligence,” IEEE Transactions on
Mobile Computing, 2022.

F. Iandola, M. Moskewicz, S. Karayev, R. Girshick, T. Darrell, and
K. Keutzer, “Densenet: Implementing efficient convnet descriptor pyra-
mids,” arXiv preprint arXiv:1404.1869, 2014.

(28]

[29]

[30]

(31]

[32]

(33]

[34]

[35]

L. Yang, Y. Han, X. Chen, S. Song, J. Dai, and G. Huang, “Resolu-
tion adaptive networks for efficient inference,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2020.

X. Chen, H. Dai, Y. Li, X. Gao, and L. Song, “Learning to stop while
learning to predict,” in International Conference on Machine Learning.
PMLR, 2020, pp. 1520-1530.

X. Dai, X. Kong, and T. Guo, “Epnet: Learning to exit with flexible
multi-branch network,” in Proceedings of the 29th ACM International
Conference on Information & Knowledge Management, 2020, pp. 235—
244.

Z. Chen, Y. Li, S. Bengio, and S. Si, “You look twice: Gaternet for
dynamic filter selection in cnns,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp.
9172-9180.

Z. Wu, T. Nagarajan, A. Kumar, S. Rennie, L. S. Davis, K. Grauman, and
R. Feris, “Blockdrop: Dynamic inference paths in residual networks,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 8817-8826.

Y. Wang, J. Shen, T.-K. Hu, P. Xu, T. Nguyen, R. Baraniuk, Z. Wang,
and Y. Lin, “Dual dynamic inference: Enabling more efficient, adaptive,
and controllable deep inference,” IEEE Journal of Selected Topics in
Signal Processing, vol. 14, no. 4, pp. 623-633, 2020.

S. Kramer, D. Ziegenbein, and A. Hamann, “Real world automotive
benchmarks for free,” in 6th International Workshop on Analysis Tools
and Methodologies for Embedded and Real-time Systems (WATERS),
vol. 130, 2015.

A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” Handbook of Systemic Autoimmune Diseases, vol. 1, no. 4,
2009.

Jiaming Huang received the B.S. degree from the
College of Internet of Things, Hohai University. She
is currently working toward the Ph.D. degree in the
College of Computer Science, Zhejiang University.
Her current research interests include Internet of
Things and edge computing.

Yi Gao (M’15) received the B.S. and Ph.D. degrees
from the College of Computer Science at Zhejiang
University, China, in 2009 and 2014, respectively.
From 2015 to 2016, he visited McGill University as
a Visiting Scholar. He is currently a full professor
in the College of Computer Science at Zhejiang
University. His current research interests include
Internet of Things and intelligent edge computing.
He is a member of the IEEE and the ACM.

Wei Dong (S’08-M’12) received the B.S. and Ph.D.
degrees from the College of Computer Science at
Zhejiang University in 2005 and 2011, respectively.
He is currently a full professor in the College
of Computer Science at Zhejiang University. He
leads the Emerging Networked Systems (EmNets)
research group in Zhejiang University. His research
interests include AlIoT, wireless and mobile comput-
ing, and IoT security. He is a member of the IEEE
and the ACM.

