
Providing Realtime Support for Containerized Edge Services

WENZHAO ZHANG, College of Computer Science, Zhejiang University, China

YI GAO AND WEI DONG, College of Computer Science, Zhejiang University; Alibaba-Zhejiang University

Joint Institute of Frontier Technologies, China

Containers have emerged as a popular technology for edge computing platforms. Although there are varieties of container
orchestration frameworks, e.g., Kubernetes to provide high-reliable services for cloud infrastructure, providing real-time
support at the containerized edge systems (CESs) remains a challenge. In this paper, we propose EdgeMan, a holistic edge
service management framework for CESs, which consists of (1) a model-assisted event-driven lightweight online scheduling
algorithm to provide request-level execution plans; (2) a bottleneck-metric-aware progressive resource allocation mechanism
to improve resource eiciency. We then build a testbed that installed three containerized services with diferent latency
sensitivities for concrete evaluation. Besides, we adopt real-world data traces from Alibaba and Twitter for large-scale
emulations. Extensive experiments demonstrate that the deadline miss ratio of time-sensitive services run with EdgeMan is
reduced by 85.9% on average compared with that of existing methods in both industry and academia.

CCS Concepts: · Networks→ Network services; · Computer systems organization→ Real-time system architecture.

Additional Key Words and Phrases: Realtime Support; Containerized Edge Service; Cloud-Native

1 INTRODUCTION

The container is becoming popular for its productivity (e.g., accelerate development, improve consistency across
environments), resilience (i.e., prevent single point failure), portability (i.e., move across nodes), scalability (e.g.,
scale up/down in terms of replica), etc. These beneits are widely recognized by cloud providers [8, 31, 49].
According to Gartner, by 2025, more than 85% of global organizations will be running containerized applications
in production [25].
Edge systems usually hold multiple services for both cloud and end devices. Containerized Edge Systems

(CESs) emerge to provide service isolation and facilitate seamless cloud-edge coordination. Recent edge systems
such as EdgeX [21] and Azure IoT Edge [9] leverage the container as the backbone infrastructure.

Real-time computing is crucial for many CESs use cases:

• Automatedmonitoring and control systems at the edge [41]: Systems taskedwithmonitoring and controlling
infrastructure, equipment, vehicles, and other physical assets at the edge must detect events and adjust
in real time. Delayed detection, response, or control in these environments could have disastrous safety,
operational or economic consequences before the issue or event was remediated from the cloud or a remote

This work is supported by the National Key R&D Program of China under Grant No. 2019YFB1600700, the National Natural Science Foundation
of China under grant No. 62072396 and 62272407, łPioneerž and łLeading Goosež R&D Program of Zhejiang Province under grant No.
2023C01033, and the National & Zhejiang Provincial Youth Talent Support Program. (Corresponding authors: Yi Gao and Wei Dong).
Authors’ addresses: Wenzhao Zhang, College of Computer Science, Zhejiang University, 38 Zheda Rd, Hangzhou, China, wz.zhang@zju.edu.cn;
Yi Gao and Wei Dong, College of Computer Science, Zhejiang University; Alibaba-Zhejiang University Joint Institute of Frontier Technologies,
38 Zheda Rd, Hangzhou, China, {gaoy,dongw}@zju.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from
permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1533-5399/2023/9-ART $15.00
https://doi.org/10.1145/3617123

ACM Trans. Internet Technol.

https://doi.org/10.1145/3617123
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3617123&domain=pdf&date_stamp=2023-09-04

2 • Wenzhao Zhang and Yi Gao and Wei Dong

Table 1. Service specifications under K8s setings, with the HPA and VPA disabled. The one-shot execution time is the stable

average execution time for a specific service.

Speciications/Service LPR VC VD

Quota Range
CPU (Core) [0.8, 1] [6.4, 8] [0.64, 0.8]

Mem (GB) [0.16, 0.2] [0.95, 1.2] [0.14, 0.18]

Replica Limit 10 5 10

One-shot Execution Time (s) 0.75 9.5 0.03

Deadline (s) 0.80 10 0.04

center. Real-time operation using edge CESs is essential for such monitoring and control applications where
rapid local response is imperative.
• Anomaly detection at the edge [47]: Real-time anomaly detection using CESs is needed to promptly detect
and mitigate threats like equipment tampering, component malfunctions, network intrusions, or other
undesirable events in remote environments. Delayed edge detection of such anomalies defeats the purpose
and could allow harm to occur before the issue is observed or addressed.
• AR/VR/XR [39]: AR enabled by CESs could leverage real-time location data, camera inputs and computer
vision to overlay interactive information and objects on the surrounding physical world. Rapid processing
is needed to dynamically respond to a user’s ield of view, location and actions.

In above example cases, failure to meet real-time service constraints is not merely inconvenient but could
profoundly compromise systems at the edge by delaying or preventing rapid autonomous response to urgent
needs.

Provisioning proper amount of resources is the essence of providing real-time support in CESs as the ultimate
goal of existing methods (e.g., priority-based scheduling, resource reservation, determinism, limited preemption,
and interference avoidance [10, 13, 36]) is to make sure that the service can have enough resources (either
CPU cores or others) to inish its request on time. Container engines like Docker provide ine-grained resource
allocation capability via Cgroups [60].
Unfortunately, the ability to allocate resources only is not enough. Because the resource allocation plan is

ixed for a service, which means that when the computing context of this service is changed (e.g., there is a
workload surge or another service with higher-priority is started), the performance degrades. To deal with this
degradation, system operators will have to re-allocate resource manually according to the highly change contexts.
To avoid the tedious manual coniguration, container orchestration frameworks like Kubernetes (K8s) emerge.
K8s can monitor diferent metrics (CPU, memory, etc.) of a service and scale it up/down according to a predeined
threshold set by the user, e.g., ładding two replicas if CPU utilization surpasses 80%". Although K8s can provide
service QoS through container-level dynamic resource allocation, it is still hard to provide request-level real-time
support, especially for services with short tasks (e.g., a few minutes).
An example scenario. Consider a bridge monitoring scenario. At the edge, we deploy three containerized

edge services: License Plate Recognition (LPR), Vehicle Counting (VC), and Vibration Detection (VD). LPR is
executed when there is an important event, e.g., hunting a fugitive’s car. VC runs continuously to provide
statistical information about the vehicle traic on the bridge. VD keeps monitoring if there is an abnormal
vibration happens. They are typical services running in edge nodes to give timely response. The LPR and the
VC service are deployed on edge servers that are closer to the camera; the VD service is deployed on industrial
personal computers at the edge that are closer to the vibration sensors (e.g., accelerometers). Table. 1 shows the
speciications of these services together with the arbitrary deadline settings. We can see that they have distinct
features, e.g., latency sensitivity and resource requirements. Speciically, LPR has both a medium execution
latency (0.75s) and resource requirements (1 CPU, 200 MB memory), VC needs both a large execution latency

ACM Trans. Internet Technol.

Providing Realtime Support for Containerized Edge Services • 3

(9.5s) and resource requirements (8 CPU, 1200 MB memory), VD has a small execution latency (0.03s) and small
resource requirements (0.8 CPU, 180 MB memory). According to the survey [65] conducted by Varghese et al.,
which covers 14 edge computing related benchmarks and includes 28 edge services, 85.71% of which are data
analysis service with deep-learning or machine-learning models. The three services are also fall in this category.
In summary, we believe the three services are good representative of services running in edge.

The timeliness of a service can be interpreted as the number of requests that do not miss the deadline of their
belonging services in the long run. Our goal is to provide real-time support for these services. Unfortunately,
existing methods can hardly achieve this goal (detailed discussions see ğ3.2 and ğ8).
Issues and root causes. Issue 1: Request Unawareness. Requests might constantly violate the deadline while

the metric monitor can barely ind out. The cause is two-fold: (1) Requests can easily pile up as many edge
services are single-threaded or have a ixed-size queue. According to the survey conducted by Varghese et al.
[65], 82.14% of the surveyed edge services are single-threaded [17, 29, 69] or queued [58]. The coming requests
can be executed with assigned resource utilization but will sufer from high waiting latency. Nevertheless, K8s
only knows that the resource utilization is under the threshold without worrying about the high deadline miss
ratio of requests. For example, VC is a CNN-based single-threaded service that takes video stream as input and
outputs the vehicle number. When 3 requests come together, the execution time for each of them is 9.5s, 19s (wait
for 9.5s), and 28.5s (wait for 19s) respectively while the resource consumption remains the same. As a result, the
overall deadline miss ratio of VC for these requests is 66.67%. (2) The metric sampling and autoscaling period
are too long in comparison to request processing. K8s is designed for large-scale distributed cloud systems that
host many long-lived services, whose primary concern is stability. K8s is not optimized for short-lived requests,
which requires shorter monitoring periods. A short sync period will lead to unreliable resource metric value and
luctuating replica numbers, which is usually unacceptable. Consequently, requests might constantly miss the
deadline due to the unmatched time scale. For example, the default scheduling and sampling period of K8s is
15s. If we send continuous tasks, say 1 request per 0.01 second, to VD, all 15 requests cannot meet their deadline
before K8s can do anything.

Issue 2: Resource Wastage. K8s autoscaler can horizontally add/remove replica (i.e., horizontal pod autoscaler,

HPA) or vertically increase/decrease the resource quota (i.e., vertical pod autoscaler, VPA) of a service. Unfortu-
nately, the former will consume/release resources in the unit of pods1 and the latter recommends resources only
base on hourly-averaged utilization history, which usually lacks accuracy. For example, say K8s HPA decides
to horizontally scale up LPR (add a replica) when it detects the CPU utilization surpasses 80%. Then resultant
resource consumption will scale from 1 CPU, 0.2 GB memory to 2 CPU, 0.4 GB memory. However, the actual
need to handle more requests of LPR may be 1.5 CPU and 0.25 GB memory. The K8s VPA tries to address this
issue by increasing the CPU and memory quota individually rather than monotonically. Unfortunately, the stale
information it leverages cannot aford to a highly changing environment.

Challenges.Tackling the issues above is not straightforward. The challenge for tackling issue 1: Request modeling
can hardly adapt to a highly dynamic environment. It seems that system operators can simply implement a new
plug-in [1] to detect request arrival for each service and achieve ms-level metric scraping via metric customization.
Speciically, developers can write highly eicient Cgroups metric scraper and integrate it to CESs using K8s APIs
[2, 3] or metric system such as Prometheus [4]. Although system operators can manage to make CESs become
request aware, achieving real-time is still challenging because of the high request rate. Ideally, CESs should be able
to provide real-time support for each service request, which requires highly lightweight but efective mechanisms.
For example, CESs need to know current computing context (e.g., resource utilization), the coming workload
(e.g., request concurrency), the estimated latency of processing these requests given diferent resource allocation
plans, etc. Achieving this is non-trivial because of the requirement of thorough, foreseeable information about

1The pod is the smallest scheduling unit in K8s that contains one or more containers.

ACM Trans. Internet Technol.

4 • Wenzhao Zhang and Yi Gao and Wei Dong

the service workload, resource requirement, and the corresponding latency. However, traditional model-based
works [14, 43, 80] require tons of oline proiling and thus can hardly be adaptable to highly dynamic context
changes (e.g., hardware, application types, and computational intensity).
The challenge for tackling issue 2: The search space of inding suitable resource quota for containerized services

is exponentially large. Developers can also follow their intuition or make thorough proiling to conigure the
computing resources (e.g., CPU, memory) for each service. This straightforward method can be far from optimal
as the developer can hardly know the relationship between the conigured resources and the corresponding
performance [71], which usually leads to over- or under-provisioning [78]. Existing schedulers for containers
[6, 23, 28, 30, 34, 68, 74, 76, 78, 79] allocate resources in coarse-grained (e.g., replica number, CPU cores), which
causes achieve high resource wastage. For example, say the ideal CPU requirement of the VD service is 0.8,
existing methods tend to provision 1 CPU for it, leading to 0.2 CPU core wastage. What is worse, inding the
optimal resource quota for each service is exhaustive if not impractical. If we take a step of 0.1, 50MB in CPU
and memory quota (with the maximum value of 4, 2000 MB, respectively), 1 for replica (with the maximum value
of 10), the total number of possible policies for three services will be: (40 ∗ 40 ∗ 10)3 ≈ 4.1 · 1012.

Our approach. This paper proposes the EdgeMan system with novel techniques to solve the above issues in
CESs by using unique characteristics. For issue 1, we propose a model-assisted lightweight scheduling algorithm
to achieve request-aware decisions. Concretely, we use CES-speciic features to build workload and latency
models, providing accurate near-future information. Given that, we develop a priority-based scheduler to generate
fast but efective decisions. For issue 2, we propose a progressive bottleneck-aware allocation mechanism to
make time- and resource-eicient autoscaling policies. Speciically, we build a gradient-based model to describe
the impact of a resource type. With the above models, we leverage a heuristic algorithm to eiciently search
exponentially large decision space and give reasonable resource allocation policies.

We implement EdgeMan and evaluate its performance extensively. Results show that: (1) EdgeMan can reduce
85.9% deadline miss on average. (2) The resource utilization of EdgeMan is 81.8% higher than that of exiting
works. (3) The policy searching eiciency of EdgeMan is 99.6% faster than that of baselines.

We summarize the contributions as follows:• We propose EdgeMan, a real-time support solution for containerized edge services with both long- and
short-lived tasks. We carefully formulate the problem, which is a mix-integer non-linear programming
problem.
• We develop a request-level event-driven scheduling algorithm and a progressive bottleneck-metric-aware
resource allocation mechanism to solve the request unawareness and poor resource utilization issue.
• We implement the prototype of EdgeMan together with a testbed that installs three latency-sensitive
services. We evaluate EdgeMan through both extensive emulation with two real-world data traces from
Twitter [56] and Alibaba cluster [7] as well as testbed execution.

2 SYSTEM MODEL AND PROBLEM FORMULATION

2.1 System Model

We irst introduce the following notations.

• � , �, � . We use them to denote the set of nodes, communication links, and edge services in the network.
• �, �, �, �� , ��, � , �� . We use �� to denote a node; ��, � indicates if there is a communication link between �� and
� � ; �� denotes a service.
• ��, � . We use ��, � denotes the bandwidth of ��, � .
• Req� , size↑ (��), size↓ (��). We use Req� to denote the set of requests of �� ; Others represent the attributes
of �� , including incoming and returning data size.
• � (��), pri(��), rep(��). We use them to denote the oloading indicator, priority, replica number of �� .

ACM Trans. Internet Technol.

Providing Realtime Support for Containerized Edge Services • 5

• �, C�� , ���� , Q(����), q(����). We use C�� to denote the set of containers of �� on node � and we have∑ |� |
�=1 |C�� | = rep(��) for ∀� ∈ ��� (|� |). Here, we use ��� (�) to denote {1, ..., � }. ���� is a speciic container

that belongs to C�� , where� ∈ ��� (|C�� |). Q(����) is the set of resource quota that is assigned to ���� .
q(����) is a speciic resource quota of ���� , e.g., CPU, memory.
• �, ��� . We use ��� to denote a request from R� .

We model the cloud-edge-end network as an undirected graph. Nodes consist of masters and workers, which
are both available to deploy services. Masters also take charge of making scheduling decisions. Each worker is
connected to a master. A request is sent to a master node and then dispatched to suitable worker nodes. Nodes
are equipped with heterogeneous resources, which vary with time because of resource contention. The cloud can
be seen as a special worker node that is assumed to have unlimited resources.

We assume that edge services reside in one container but can have multiple replicas. Each replica has a default
resource quota. For service requests, we assume that they have roughly the same data sizes and thus have similar
resource requirements. Each request of a service share the same deadline T� , say ��� arrives at the system at time
� , if its processing results return to the sender before time � + T� , it meets the deadline; otherwise, it misses the
deadline.

2.2 Problem Formulation

In containerized edge computing environment, the request latency consists of ive parts, i.e., uploading L↑
��
,

transferring L����
��

, waiting L����
��

, processing L����

��
, and downloading L↓

��
latency. Assuming that the master

nodes forward the requests without bufering, we can describe the latency L�� as follows:

L�� = L↑�� + L
����
�� + L����

�� + L����

��
+ L↓

��
. (1)

For a speciic request that is generated at worker �� , transferred to master � �1, and executed at worker � �2, we
have:

L↑
��

=

����↑ (��)
��, �1

,L����
�� =

����↑ (��)
� �1, �2

,L↓
��

=

����↓ (��)
� �2,�

,

L����

��
= ������� (�� (���), �� (��), �� (� �2), � (��)),

L����
�� =

︁

� ∈Q��

������� (�� (�), �� (��), �� (� �), � (��′)) . (2)

Here, �� (·) returns the speciications of a request, a service, or a node; ������� (·) represents the latency model
that maps resource quota to the estimated latency; � (·) denotes the allocated resource quota. Q�� represents the
waiting queue on node � for service � . The details of latency modeling will be described in ğ3.1.

Our goal is to minimize the Deadline Miss Ratio (R) of services. We deine R for �� as follows:

R� =

|���� |︁

�=1

|{L�� | L�� ≥ T� }|
|{L�� }|

. (3)

We then draw up following execution and scaling policies:

Δ = {��� | ∀� ∈ ��� (|� |),∀� ∈ ��� (|���� |)},
Λ = {��� | ∀� ∈ ��� (|� |),∀� ∈ ��� (|���� |)}. (4)

��� is a variable that indicates if ��� will be forwarded to execution (��� = 1) or not (��� = 0). ��� is the scaling
plan of ��� , which contains two parameters: (1) the replica number of �� on each node |��� |; (2) the resource quota
of containers on each node Q(����).

ACM Trans. Internet Technol.

6 • Wenzhao Zhang and Yi Gao and Wei Dong

With the above notations, we can formulate the problem as the following optimization problem.
Find the values of Δ, Λ.

P : min
Δ,Λ

|� |︁

�=1

�� · R��� (��)
�

(5)

� .� . �1 : ��� = {0, 1},∀� ∈ ��� (|� |),∀� ∈ ��� (|���� |)

�2 :
|� |︁

�=1

|��� | ·� (����) ≤ ��� ,∀� ∈ |� |,∀� ∈ ��� (∞)

The weight �� relects the users’ preferences towards the relative importance for services with diferent
priorities. It ofers a control knob to be tuned by edge operators or users to optimize diferent applications and
scenarios. In particular, we can decrease � to ensure the faster response of higher-priority services or vice versa.
Constraint �1 indicates that a service request can either be forwarded to execution or on-hold. Constraint �2

ensures that the computation resources can not exceed the resource capacity ��� for �� at time � .
The major challenge that impedes the derivation of the optimal solution to the above problem is the lack

of future information. To optimally solve P (Eq. 5), near-future information such as service workload and the
estimated completion time of a service request is required. Such information is diicult to predict in advance
accurately. Moreover, P (Eq. 5) is a mixed-integer nonlinear programming problem which is quite diicult to solve
even if the future information is known as a priori. As a result, we need a hybrid approach that can eiciently
adapt online conditions, make execution and scaling policies.

3 EVENT-DRIVEN LIGHTWEIGHT SCHEDULING

In this section, we would like to develop a lightweight algorithm to deal with the challenges mentioned in previous
sections. We irst build oline models to provide near-future information. We then develop a priority-based
scheduling algorithm to give quick decisions for each request. Finally, we discuss some practical issues.

3.1 Ofline Modeling

EdgeMan currently provides workload and latency models by default. Edge devices that are capable of running
containers are usually equipped with direct power supplies so we do not consider the energy model.

3.1.1 Workload Model. The characteristics of containerized edge services can be diferent [45], and so do their
requests. Some services have a high request rate within seconds [50] while others receive few requests across
hours [66]. Such diference will deinitely afect the accuracy of history-based models for the lack of data. To
obtain more precise workload models, we irst classify them into long- and short-term.

(1) For long-term services:We propose a distribution ittingmechanismwith incremental reinement. Concretely,
when a new service is tagged long-term (with few data points), we run a quick itting through common distributions
and choose the best one. As the requests keep coming, EdgeMan will choose to run a iner-grained itting locally
or on the cloud. The reinement process is executed periodically.
(2) For short-term services: Existing literature has explored well-established methods, such as regression

[26, 53], autoregressive models [33, 80], and neural networks [33, 78]. The challenge of adopting these methods in
CESs is how to address the model execution time scale and error rate trade-of gracefully. To tackle the problem,
we implement three workload models, including (1) a naive statistical model that takes the max value of several
prior samples as the predicted workload; (2) an ARIMA model; (3) a vanilla LSTM. At runtime, EdgeMan can
dynamically trade accuracy for latency or vice-versa via model switching.

ACM Trans. Internet Technol.

Providing Realtime Support for Containerized Edge Services • 7

Fig. 1. Latency modeling methods comparison, including support vector regression (SVR), decision tree (DT), random forest

(RF), gradient boosting regression tree (GBDT), extra-tree (ET), linear regression (Linear), k-nearest neighbor (KNN), Adaboost

(AdaB), and bagging.

3.1.2 Latency Model. Ideally, we can build a white-box latency model in accordance with Eq. 1 and 2. For
example, we can leverage a Petri-Net-based model [45] to characterize the lifecycle of a containerized edge service
request and take advantage of queuing theory to model various waiting times [78]. Concretely, developers can
tune the end-to-end latency by manipulating diferent parts of the latency in accordance with the real-world
settings, e.g., network conditions, workload patterns, and service speciications. Unfortunately, the white-box-
based methods usually have strong assumptions about the environment that are hardly applicable in highly
dynamic edge scenarios. Furthermore, it is hard to model the complex lifecycle of a request precisely. So we uses
black-box-based methods to estimate the request latency.
EdgeMan considers the following features for latency models: (1) the characteristics of containerized edge

services, e.g., replica number and workload; (2) the runtime scenario of a request, e.g., network condition and
resource consumption; and (3) computing power of a hardware platform, e.g., the frequency, time slice and other
specs of CPU. After selecting the features, we evaluate a wide range of estimation methods from regression,
ensemble- and deep-learning-based models in terms of mean absolute error, training, and inference time (as
shown in Fig. 1). In our implementation, we use extra-tree regression as EdgeMan default solution. While
EdgeMan will also periodically renew or re-select the latency model for a service.

The workload and latency models are trained for each service. The datasets are collected via a few rounds of
oline execution under diferent settings (replica number, resource quota, etc.). When hosting a new service, we
need to repeat the above procedure, which might be time-consuming. We propose corresponding techniques to
reduce the cold-start time (detailed in ğ4.1).

3.2 Online Scheduling

3.2.1 Scheduling Actions and Mode. Given the oline models, we can try to decide on how a coming request is
executed, i.e., determine Δ and Λ as deined in Eq. 4. Towards this, we comprehensively survey existing literature
on container scheduling over three related topics: (1) cloud-edge system [28, 68, 74, 76, 79]; (2) Serverless

ACM Trans. Internet Technol.

8 • Wenzhao Zhang and Yi Gao and Wei Dong

Table 2. Scheduling action comparison between EdgeMan and existing solutions. ★: Note that there are some open-source

projects such as kube-batch [37] and Volcano [24] can enable batch job execution on K8s.

Category Service-level Request-level

Action Assign
Resource Allocation

Forward Ofload Batch Discard
Hold Scale Replica Scale CPU Scale Memory

Concordia [23] × √ × √ × √ × × ×
Sinan [79] × √ × √ × √ × × ×
Metis [68]

√ √ × × × √ × × ×
KaiS [28]

√ √ × × × √ √ × ×
KEIDS [34]

√ √ × × × √ × × ×
MArk [78]

√ √ √ × × √ × × √

NetMARKS [74]
√ √ × × × √ × × ×

Microscaler [76] × √ √ × × √ × × ×
BATCH [6] × √ × × × √ × √ ×
Fifer [27]

√ √ √ × × √ √ √ ×
Native K8s

√ √ √ √ √ √ √ ×★ ×
EdgeMan

√ √ √ √ √ √ √ √ √

computing [6, 78]; (3) 5G and IIoT [23, 34] and summarize their scheduling actions in Table. 2. We found that
most of the existing works focus on service-level scheduling instead of request-level, which can hardly support
real-time execution.
EdgeMan embraces the merits of SOTA arts and provides a large spectrum of scheduling actions, especially

for CESs. Concretely, EdgeMan can:

• Assign a service to diferent worker nodes (including the cloud, which is treated as a special worker node).
• Hold the resource allocation of a service as before.
• Scale up/down of a service, i.e., increase/decrease the replica number, CPU, or memory quota of a service.
• Forward a request to execution.
• Oload a request to another node.
• Batch a request into a waiting queue.
• Discard a request when it can never meet its deadline.

Another important aspect of a scheduler is the working mode, i.e., periodic or event-driven. Most schedulers
mentioned above work periodically with variant time intervals from 20�s to 1h. However, scheduling services/re-
quests with a ixed interval can either be resource unfriendly (interval is too small) or causes high deadline miss
ratios (interval is too large). What is worse, even if we manage to ind the magic value of scheduling intervals
empirically, it is still problematic when adding new services with diferent request patterns. So, we build a
scheduler that works in an event-driven mode. We carry out two simple simulations to further justify our claim.

We simulate a scheduler that composes three key logic components: (1) a scraper that grabs and parses current
resource statistics of worker nodes and requirements of requests; (2) a model executor that executes latency
models for diferent services; (3) a decision maker that calls heuristic algorithm solvers to generate execution
plans for requests.

Firstly, we start a daemon process that is constantly monitoring the average CPU utilization of the simulated
scheduler for 10 minutes with diferent scheduling intervals2. We generate 10 requests in the queue at the
beginning of every interval, each of which belongs to a distinct service. The decision maker uses random latency
models (as in ğ3.1) and heuristic solvers (as in ğ4.2) to make up decision plans for the 10 requests. Fig. 2 (a) shows

220 �s [23], 0.25s [28], 10s [76], 15s [34, 74], 60s [78]

ACM Trans. Internet Technol.

Providing Realtime Support for Containerized Edge Services • 9

60s15s10s0.25s20 s
Scheduling Interval

0

20

40

60

80

100

CP
U

Ut
iliz

at
io

n
(%

)

8.0
19.326.3

82.188.7

(a) Simulation on scheduling interval v.s. CPU utilization

5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5
Deadlines(s)

0

20

40

60

80

100

De
ad

lin
e

M
iss

 R
at

io
 (%

)

uniform zipf poisson

(b) Simulation on deadline miss ratio v.s. deadlines

Fig. 2. Illustrative simulation results

the results. We can see that as the scheduling interval becomes shorter, the average CPU utilization becomes
larger.

Secondly, we generate 10 services with distinct deadlines, randomly inject 10k requests (1k for each service) to
a ix-interval scheduler. Requests follow diferent distributions (uniform, zipf, and poisson in this simulation).
The deadlines are uniformly sampled around its interval at a step of 5%, i.e., let the interval equals to 10s, then the
deadlines for 10 services are: 5s, 5.5s, ..., 9s, 9.5s. Assume that each request will inish immediately once scheduled
(i.e., with zero execution time). We measure the average deadline miss ratio. Fig. 2 (b) shows the results. We can
see that a ix-interval scheduler itself can cause high deadline miss ratio (up to 50%) regardless of models or
scheduling algorithms.
Although Metis scheduler works in the event-driven mode, it is designed for long-running applications and

its scheduling decision time will last tens of minutes [68], which is not suitable for our scenario. As a result,
EdgeMan builds a scheduler that works in an event-driven mode but proposes scheduling algorithms on its own.

3.2.2 Priority-based Fair Scheduling Algorithm. When multiple requests of diferent services arrive simultane-
ously, EdgeMan will decide the resource allocation sequence for each service, i.e., the execution plan for the
corresponding requests based on the service priority. Moreover, considering the distinct characteristics of long-
and short-term services, EdgeMan borrows the idea of Jain’s fairness index [32] in network engineering to
balance the varying workload features for services with the same priority. Concretely, we redeine the fairness
index as follows:

J (�1, �2, ..., � |� |) =
(∑ |� |�=1 ��)2

� ·∑ |� |�=1 (��)2
=

�̄2

�̄2
, (6)

ACM Trans. Internet Technol.

10 • Wenzhao Zhang and Yi Gao and Wei Dong

where �� is the proportional workload for �� , e.g., a typical �� can be deined as follows:

���_��� �� ������ 1������

���������. ���_��� �� ������ 1 ℎ���
. (7)

To achieve a given fairness level � , one approximate method is to let �� = � · �� , where � =
1−�+

√
1−�

�
and � is

an arbitrary factor, typically used for normalization.

Algorithm 1 Priority-based fair scheduling algorithm

Input: Request list ���_����� , fairness level � , arbitrary factor �, specs of services and nodes ����� , service models� , current
timestamp � , service deadlines T .

Output: Allocation sequence ���� , execution plan �� .
1: ���_������ ← group(���_����� , key=����� .s.priority)
2: for � ∈ ���_������ do
3: index← cal_index(�, � , �)
4: �← sort(�, key=index)
5: ���� ← ���� ∪ {g}

6: for ��� ∈ ���� do
7: if not service_is_assigned(���) then
8: �

���
� ← �

���
� ∪ {łassignž}

9: for ��� ∈ ��� do

10: if � + cal_T(� , �����) ≤ T��� then

11: �
���
� ← �

���
� ∪ {łforwardž}

12: else if � + cal_oload_T(� , �����) ≤ T��� then

13: �
���
� ← �

���
� ∪ {łoloadž}

14: else if � + cal_worst_T(� , �����) ≤ T��� then

15: �
���
� ← �

���
� ∪ {łbatchž}

16: else if � + cal_scale_T(� , �����) ≤ T��� then

17: �
���
� ← �

���
� ∪ {łscalež}

18: else

19: �
���
� ← �

���
� ∪ {łdiscardž}

20: �� ← �� ∪ �
���
�

21: return ���� , ��

Algorithm 1 shows the pseudo-code of our algorithm. The input of the algorithm contains: (1) The request list
at timestamp � , ���_����� . (2) The fairness level � and arbitrary factor � are used in the fairness index calculation.
(3) Speciications of services and nodes ����� together with service models � , which estimate workload and
latency. (4) Service deadlines T . The output is the resource allocation sequence ���� and execution plan �� for
each requests.

We irst group together requests with the same priority (Line 1). Then, we calculate the fairness index for each
group and sort the group accordingly (Line 2-4). We can thus aggregate the sorted group and get the allocation
sequence (Line 5). After that, we iterate each request in each priority group to generate the execution plan in
the sequence of forward, oload, scale, and discard (Line 6-19). Speciically, we will check if the service that
the requests belong to has been assigned to a worker node (line 7-8). When a request can presumably meet
its deadline, it will be forwarded directly (Line 10-11). Otherwise, we irst try to oload the request because it
requires no adjustment on local nodes (Line 12-13). If the current network condition is poor or the transmission
data is too large, we can try to batch the request for a while, e.g., a user-deined interval, waiting for potentially

ACM Trans. Internet Technol.

Providing Realtime Support for Containerized Edge Services • 11

100 90 80 70 60 50 40 30 20 10
Sampling Step

101

102

103

Sa
m

pl
in

g
Ti

m
e

(h
ou

r) MaxCPU= 4000, MaxMEM= 2000

Time= MaxCPU
Step × MaxMEM

Step × (TReq + TRestart)

ALPR VC VD

Fig. 3. Data preparation time for latency models.

less stringent context (Line 14-15). If batching is not viable, we then evaluate the possibility of scaling the service
(Line 16-17). If the above methods still cannot enforce the request to meet its deadline, it will be declined (Line
19). Finally, we can aggregate and get the execution plan �� (Line 20). EdgeMan scheduler will parse and enforce
the plan thereafter.

However, there are still some practical issues when providing real-time support for containerized edge services.
First, building precise oline models for each service requires comprehensive proiling, which has the cold-start
problem and is time-consuming. Second, computing resource is essential, especially for those resource-constrained
edge devices, how to efectively allocate just enough resource when scaling is also essential. We will further
address the above issues in the next section.

4 BOTTLENECK-AWARE PROGRESSIVE RESOURCE ALLOCATION

As we have mentioned in the previous section, oline modeling is hardly applicable for its exhaustive proiling. In
this section, we would like to propose a bottleneck-aware progressive resource allocation mechanism to address
this.

4.1 Progressive Botleneck Metric Modeling

To get a precise model, we have to use small sampling steps and the resulting preparation time is high. We carry
out a simple simulation to illustrate the time scale. We split sampling time into two parts, the request processing
time and container restart time3. We measure the request processing time under maximum resource quota and
use that for smaller resource quota, which is a substantial underestimation. We also measure the container restart
time. The simulation is run through diferent sampling steps. Results are shown in Fig. 3. We can see that the
time scale can reach a hundred hours for one service.

Fortunately, not all sampling steps are required. For CPU-intensive services, memory or other resources may
have a negligible efect on the execution eiciency and vice versa. Instead of exhaustive proiling, we propose
a progressive bottleneck metric modeling method to proile relevant resources eiciently. The basic idea is to
measure the gradient between latency and resources. However, such a simple model might not function well
as the relationship between resource quota, and service performance can have non-linearity. Towards this, we

3Currently, changing the resource quota of a K8s pod will cause a mandatory restart. The community is working on an in-place resource
update.

ACM Trans. Internet Technol.

12 • Wenzhao Zhang and Yi Gao and Wei Dong

divide resources into diferent levels, e.g., say a service is allocated with 1 CPU core, we can divide the intervals
every 0.1 and get ten gradients. After that, we merge the levels with similar values and get the inal sequence.
Formally, the above process is summarized in Algorithm 2.

Algorithm 2 Bottleneck metric determination algorithm

Input: Resource quota set � , service set � , level intervals ����� , similarity factor �� , convergence factor �� .
Output: Bottleneck metric sequence ����.
1: for � ∈ � do

2: for � ∈ � do

3: min� ← ind_Valley(� , �, �� , repeat=5)
4: max� ← ind_Plateu(� , �, �� , repeat=5)
5: Levels← gen_Levels(min� , max� , Inter�)
6: Levels← merge_Levels(Levels, ��)
7: for ����� ∈ Levels do
8: ���� ← cal_Grad(����� , repeat=3)
9: ����_�_�_� ← ����_�_�_� ∪ {����}

10: ����_�_�← ����_�_� ∪ ����_�_�
11: ����_� ← ����_� ∪ ����_�_�
12: ����_� ← prune(����_� , �� , primary=3)
13: ����← ���� ∪ ����_�
14: return ����

For a resource type of a service, we irst probe the min/max values and generate levels (Lines 1-5). Then we
merge levels with a predeined similarity factor �� (Line 6). Given the inal levels, we iteratively calculate the
gradient (Lines 7-8). We can then aggregate gradient sequence across levels and resource types (Lines 9-11). The
bottleneck metrics are determined by pruning unimportant resource types (Lines 12-14).

Although faster than the brute-force method, exhaustively determining bottleneck metrics can still hardly be
done in real-time. Fortunately, this method has a short start-up time. We can run a few rounds of the algorithm
and get the rough bottleneck model for each resource. A background daemon can then reine and update the
model progressively.

4.2 Extensible Resource Allocation Mechanism

Given the oline models (from ğ3.1), resource allocation sequence (from ğ3.2), and bottleneck metric(s) (from
ğ4.1), we further advocate the resource allocation mechanism. The objective is to decide how many resources
should be allocated for a service. The basic idea is to search the allocation space in a bottleneck-aware manner.

Considering the exponentially large space, searching for the optimal allocation is impractical. EdgeMan lever-
ages heuristic algorithms to give a sub-optimal but acceptable solution in a short time. There are various algorithms
to choose from, such as Diferential Evolution (DE) [59], Genetic Algorithm (GA) [73], Simulated Annealing (SA)
[64], Immune Algorithm (IA) [67], and Particle Swarm Optimization (PSO) [35], etc.
To comprehensively evaluate the eiciency of existing heuristic algorithms, we run ive widely-adopted

alternatives in EdgeMan testbed with sample traces and keep track of their resultant latency mean absolute error
(compared with a user-deined deadline), algorithm processing time, and the memory footprint. As shown in
Table. 3, PSO prevails other algorithms in terms of MAE, processing time, and memory footprint. So we choose
to use PSO as the decision-maker.
With the help of bottleneck metric, EdgeMan can further speed up the searching procedure. We can ix

resource types that are not included in bottleneck metrics with a slightly larger value than the minimum. Such

ACM Trans. Internet Technol.

Providing Realtime Support for Containerized Edge Services • 13

Table 3. Heuristic algorithm comparison

Algorithms MAE Processing Time Memory

DE 0.00704s 0.0352s 0.434MB

GA 0.00706s 0.1111s 0.344MB

SA 14.85270s 0.2353s 0.008MB

IA 128.37839s 0.1892s 0.371MB

PSO 0.00704s 0.0193s 0.016MB

InfluxDB

Master Node

Metric Scraper

API Server

Worker Node

Container Runtime (Docker)

Scheduler

KubeletKubelet

metrics

metricsKubernetes built-in

etcd

Controller

Scheduler

Kubectl
Kubernetes built-in

etcd

Controller

Scheduler

Kubectl

metrics

replica

signals

latency
workload

metricsscheduling policies

EdgeMan ext.EdgeMan ext.K8s NativeK8s Native Open-sourceOpen-source EdgeMan ext.K8s Native Open-source

EdgeMan Runtime

Network Proxy (kube-proxy)

Service 1

...

... Service N

ContainersContainers ContainersContainers

Network Proxy (kube-proxy)

Service 1

...

... Service N

Containers Containers

Sniffer

JaegerJaeger

IstioIstio

metrics

 Estimator

Queue

Request Generator

Pods Pods

Fig. 4. Architecture of EdgeMan testbed prototype.

a method dramatically reduces the dimension of the search space. Also, we can greedily search the bottleneck
metrics from the most important to the least, which can be interrupted but still give good results.

5 IMPLEMENTATION

In this section, we will briely introduce K8s and the key features relevant to this work, followed by an overview of
the proposed extended components. Fig. 4 shows the overall system architecture of K8s that integrates EdgeMan.
1) K8s: K8s is a framework designed to orchestrate containerized workloads on clusters. The basic building

block is a pod, which encapsulates one or more tightly coupled co-located containers that share the same set of
resources. The amount of requested and/or limited resources (including CPU, memory, storage, etc.) is suggested
to be speciied for a pod in order to make reliable decisions on pod placement (scheduler). A pod is designed to
run a single instance of an application. As a result, multiple pods can be used to horizontally scale an application
(controller). K8s API server validates and conigures data for the API objects. Kubelet is the primary łnode agent"
that can register nodes with the API server, and monitoring the running status of a pod, where cAdvisor provides
an understanding of the resource usage and performance characteristics.
2) Extended Components: On master nodes, the Istio controller will take over all the requests of registered

services into request queue and waiting for the execution plan of EdgeMan scheduler. More speciically, an Istio
sidecar (i.e., an Envoy proxy) will be injected into each service for request routing. EdgeMan also integrates Jaeger,
a distributed tracing tool that can grape the request route and latency. We implement a python gRPC client that
will grab tracing results from Jaeger. The metric aggregator will continuously monitor the state of nodes and pods
in the cluster, including current replica number, resource consumption, and network conditions. The collected
data are formalized and stored in a time-series database InluxDB, which is a popular open-source solution in
time-series data storage. Given the formalized metrics, the estimator makes predictions not only on the coming
workload of services requests but the completion time of the requests, which enables the EdgeMan scheduler to

ACM Trans. Internet Technol.

14 • Wenzhao Zhang and Yi Gao and Wei Dong

draw up proper scheduling policies. On worker nodes, we build a request generator module that will generate
requests when the system has idle resources for progressive model reinement. EdgeMan runtime continuously
fetches metrics from kubelet and transmits them to the master nodes.
As mentioned in ğ3, EdgeMan scheduler works in an event-driven manner. More speciically, the scheduler

will be triggered by the following three types of built-in signals:

(1) request-arrival: whenever a new request arrives.
(2) resource-changed: when the typical resource (e.g., CPU, memory, bandwidth, etc.) changes greatly (deter-

mined by a user-deined threshold).
(3) time-expired: users can deine timers that enforce EdgeMan scheduler work periodically; whenever a timer

expires, the signal will trigger the scheduler.

Note that users can also deine new signals for EdgeMan scheduler, e.g., request-inished. Due to the non-
in-place nature3, request-triggered resource reallocation is currently not realistic. Towards this, EdgeMan pro-
vides two alternatives. One and the default version is K8s native, i.e., periodically sync and change the re-
source allocation. The other is the user-customizable trigger. For example, users can deine a trigger as łIF

R��� (��)
�

> �ℎ���ℎ��� �� �ℎ� ������ 10������� THEN enforce resource reallocationž.
Results of EdgeMan scheduler includes service- and request-level. The former consists of the service assignment

plan, the replica number, and the resource quota. The latter consists of the request execution plan i.e., to forward,
oload, batch or discard the request. The results will be sent to corresponding modules that take charge of the
execution.

6 EVALUATION

Our evaluation tries to answer the following two questions:
How does EdgeMan perform in practice?We build a three-service testbed and generate requests according

to realistic situations. Testbed experiments (Fig. 7, 8, and 11 (a)) show that EdgeMan can achieve eicient
request-level scheduling and resource allocation with low overhead.

How efective is EdgeMan in large-scale scenario? Large-scale simulations (Fig. 5, 6, 9, 10, 11 (b), and (c))
show that EdgeMan workload model can cope with highly dynamic situations.

6.1 Services and The Host Machine

We use the following three time-sensitive services throughout the experiments. The LPR service recognizes the
license plate number from a ix-size image. We use the widely deployed OpenALPR [51] as the service backend.
The VC service counts the number of vehicles from a ix-size video. We use TensorFlow object counting API [5]
to implement the service backend. The VD service classiies a ix-size time-serial accelerometer data into ive
diferent levels of vibration. We use a simulated KNN-based implementation [18]. We set up RESTful API servers
for these services and pack them up into K8s pods.

To host the above services, we use a single PC as both the master and worker. It is equipped with an Intel Core
i7-8700 CPU @3.2GHz and 32 GB memory. The following real-world and simulation experiments are carried out
on the PC. Our testbed is only an illustrative implementation of our design. We believe that such a single PC
setup for holding three single-module services and proving that the efectiveness of EdgeMan is enough. In the
future, we will adapt our solution to more complex situations such as services with multiple modules and use a
large-scale cluster to evaluate.

6.2 Baselines

EdgeMan includes a scheduling algorithm and a resource allocation mechanism.

ACM Trans. Internet Technol.

Providing Realtime Support for Containerized Edge Services • 15

cauchy chi2
expon

exponpow
gamma

lognorm norm
powerlaw

rayleigh
uniform

Distributions

0
10 8

10 7

10 6

M
SE

Trace Length: 10447Trace MSE
Fitting Time

0.0

0.2

0.4

Fi
tti

ng
 T

im
e

(s
)

10
0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00
16

00
17

00
18

00
19

00
20

00
20

00
+

Trace Length Group

0
10 7
10 4
10 1

102

M
SE

Trace MSE
Fitting Time

0.5

1.0

Fi
tti

ng
 T

im
e

(s
)

Fig. 5. Snapshots of the Alibaba trace with fiting results and overhead.

6.2.1 Scheduling Algorithm Baselines. We compare our solution with two K8s baselines: HPA and VPA. Specii-
cally, HPA scales services horizontally, i.e., adding/reducing the number of replicas in accordance with predeined
CPU and memory threshold, which is set to 80%. VPA scales services vertically, i.e., adding/reducing the resource
quota based on usage history. We also include SOTA works in related areas. Speciically, we group them into two
categories: (1) Only scale CPU cores [23, 79] (referred to as SCPU). (2) Only scale service replicas [30, 76, 78]
(referred to as SREP). Note that most existing schedulers work in a periodic manner, to compare fairly, we use
three scheduling intervals that are closer to the three services we evaluated: 20�s [23], 0.25s [79], and 1s [28]. In
the following experiments, SCPU and SPRE will be evaluated under these intervals and we keep the best results.

6.2.2 Resource Allocation Mechanism Baselines. To compare resource allocation mechanisms. Similarly, we use
HPA, VPA, SCPU, and SREP as baselines. HPA will increase/decrease resource allocation in the unit of service, e.g.,
say a service is scaled up from 1 to 2, the resource will be doubled. VPA will increase/decrease resource allocation
in a more ine-grained way, i.e., a small portion of CPU or memory for all replicas. SCPU only increases/decreases
the CPU quota in the unit of cores. Note that SREP, in terms of scheduling or resource allocation, is exactly the
same as HPA, except that SREP uses the same workload and latency estimation/trigger from EdgeMan.

6.3 Main Results

6.3.1 Workload Prediction. As there are no publicly available traces for our services, we synthesize service
workload based on Twitter [56], and Alibaba [7] traces. We believe that Alibaba traces can provide real-world
request patterns for long-term container-based services. In contrast, Twitter traces serve as a good micro-
benchmark for short-term service as it has highly dynamic workloads.

We group Alibaba traces according to trace length and evaluate the performance of diferent distributions for
one trace and the overall performance across traces. Results (Fig. 5) show that the long-term workload models
can quickly converge with a reasonable number of data points. On the other hand, we use 20 days of Twitter
traces within a month to train short-term workload models while the rest for testing. Fig. 6 illustrates a snapshot
of the trace along with the prediction results and the overhead. The overall results show that the prediction
accuracy is good enough for the Twitter trace, which means EdgeMan short-term workload model can handle
complex and dynamic circumstances.

ACM Trans. Internet Technol.

16 • Wenzhao Zhang and Yi Gao and Wei Dong

0 50 100 150 200 250 300 350 400

3250

3500

3750

4000

Truth Stats ARIMA LSTM

MSE (req) Time (s) Memory (MB)
Stats 22476 1e-09 1e-09

ARIMA 19912 0.00211 26.999
LSTM 16872 0.00482 777.817

Fig. 6. Snapshots of the Twiter trace with prediction results and overhead.

0 25 50 75 100
10 7
10 6
10 5
10 4
10 3
10 2
10 1
100
101
102

De
cis

io
n

Ti
m

e
(s

)

LPR: 1req/0.5s
(a) Constant Workload

K8s HPA K8s VPA EdgeMan

0 25 50 75 100
10 7
10 6
10 5
10 4
10 3
10 2
10 1
100
101
102

LPR: 100req/round
(b) Sudden Workload

Fig. 7. The scheduling eficiency comparison.

0 20 40 60 80 100
of Virtual Services

10 2

10 1

100

101

102

103

Se
ar

ch
in

g
Ti

m
e

(s
)

BF
BF+

Ours-
Ours

Fig. 8. Botleneck metric searching time comparison among brute force (BF), brute force with botleneck metric awareness

(BF), and our method with (Ours) or without botleneck metric awareness (Ours-).

6.3.2 Scheduling Eficiency. To evaluate the scheduling eiciency, we generate two types of workloads, i.e., the
constant (or periodical) and sudden workload for the LPR service. We monitor and measure the scheduling policy
generation time (not including the time of enforcing the policy) of HPA, VPA, and EdgeMan for 100 times. We
do not include SCPU and SREP here as they work in a similar periodical manner with HPA and VPA. Results are
plotted in Fig. 9-10. We can see that K8s HPA and VPA are not sensitive to the workload type; they just constantly
grape metrics and generate decisions in a request-unaware manner. While EdgeMan will react to each request,

ACM Trans. Internet Technol.

Providing Realtime Support for Containerized Edge Services • 17

LPR VC VD
Evaluated Services

0.0

0.5

1.0

1.5

No
rm

al
ize

d
CP

U
Al

lo
ca

tio
n

HPA
VPA

SCPU
SREP

EdgeMan
Opt

Fig. 9. The CPU allocation eficiency comparison.

LPR VC VD
Evaluated Services

0.00

0.25

0.50

0.75

1.00

No
rm

al
ize

d
M

em
or

y
Al

lo
ca

tio
n

HPA
VPA

SCPU
SREP

EdgeMan
Opt

Fig. 10. The memory allocation eficiency comparison.

LPR VC
(a) Testbed

VD LPR VC
(b) Alibaba-Trace

VD LPR VC
(c) Twitter-Trace

VD
0.0

0.2

0.4

0.6

0.8

1.0

De
ad

lin
e

M
iss

 R
at

io Period: 0.7s/9s/0.1s Distribution: Gaussian Trace Group: 2000

HPA VPA SCPU SREP EdgeMan

Fig. 11. Deadline Miss Ratio comparison of K8s and EdgeMan.

which sufers performance degradation as the number of requests increases. Such degradation is still acceptable
when the concurrent workload is less than 100,000.

6.3.3 Resource Allocation Performance. We evaluate the allocation performance in terms of latency and resource
eiciency. (1) We measure the time of generating a resource allocation plan for four methods: Brute forth (BF),
BF with bottleneck metric awareness (BF+), our method without bottleneck metric awareness (Ours-), and our
method (Ours). We simulate a number of virtual services and use the same step to search the whole resource
allocation space. (2) We generate and inject arbitrary requests for the three services and empirically obtain the
optimal resource allocation (marked as Opt in Fig. 9 and Fig. 10). Then we measure testbed resource allocation
results for EdgeMan and other baselines.

ACM Trans. Internet Technol.

18 • Wenzhao Zhang and Yi Gao and Wei Dong

For allocation plan generation (Fig. 8), the brute-forth method, even with bottleneck metric awareness, still
takes a longer time than our method. For allocation eiciency, we plot the optimal resource as blue bars in Fig. 9
and Fig. 10. We can see that existing solutions tend to give under- or over-estimation results while EdgeMan is
obviously more resource-eicient, saving 76.79% of CPU and 1.18x of memory resources on average compared to
baselines.

The main reasons that EdgeMan can perform better than baseline are two-fold: (1) Our scheduler works in an
event-driven and workload-aware manner, which is more reactive than that of periodical scheduling. Speciically,
for computation-intensive services (e.g., VC), HPA and VPA may even not be able to give resource allocation
before the service is crushed by requests. (2) EdgeMan builds bottleneck metric models for each service, which
therefore can help to allocate resources in a well-targeted way with higher eiciency.

6.3.4 End-to-End Deadline Miss Ratio. We design three scenarios to evaluate our solution in periodic and
dynamic real-world traces with distinct patterns. Speciically, we (1) adopt the arbitrary testbed settings and
send periodical requests for each service (0.7s/req for LPR, 9s/req for VC, 0.1s/req for VD); (2) use Alibaba traces
to generate long-term requests that follow the Gaussian distribution; (3) regroup Twitter traces according to
the total number of requests in 1 minute and choose a representative trace group 2000 (i.e., there are more
than 2k requests within 1 minute); we arbitrarily sample the request arrival time in the group and form a
sequence. The original request pattern of both Twitter and Alibaba is more suitable for the cloud or datacenter
setting. To make it more suitable for the edge scenario, we have adjusted the workload in accordance with
the hardware performance. For example, we leverage the information provided in the dataset schema of the
Alibaba trace to tune the workload. Speciically, in machine_meta.csv and machine_usage.csv, we can know
the number of CPU (cpu_num) and memory size (mem_size) on a typical machine (machine_id). Given the
information, we can then adjust the workload by multiplying a ratio, which typically can be deined as: ����� =

���_���_� � _�������_��/���_���_� � _�������_���ℎ��� . On the other hand, the scheduling intervals are set
to default for HPA and VPA (i.e., 15s). While to strike a fair comparison with academic works, we use a minimal
interval (20�s [23] in our experiment) and use our workload and latency models for SCPU and SREP. We then
send the generated requests and record the deadline miss ratio.
Fig. 11 shows the results. We can see that: (1) For periodical and short-term requests, existing works tend

to perform poorly due to the long sync period and request unawareness (Fig. 11 (a) and (c)). (2) For long-term
requests, existing works can have a fair performance (Fig. 11 (b)). While we can do well in all three scenarios
due to the fast decision-making and the request-level control loop. The overall deadline miss ratio is reduced
85.9% on average.

6.4 Overhead

Table. 4 shows the overhead comparison among EdgeMan, Microscaler [76], andMArk [78]. Themetric aggregator
module takes 0.7 ∼ 2% single CPU utilization when collecting model input of estimator. To give accurate latency
and workload prediction results, EdgeMan consumes less than 0.01 and 0.1 seconds with little memory footprint.
In EdgeMan scheduler module, it takes less than 0.1 seconds to generate multidimensional scheduling policies for
one service; while Microscaler and Mark require much higher resources. The main reasons that EdgeMan can
achieve such eiciency are that: we (1) adopt fast latency models; (2) use diferent workload models to cope with
resource budget; (3) the scheduling and allocation mechanism is lightweight.

7 DISCUSSION

In this section, we will discuss future research directions or improvements towards EdgeMan.

7.1 Assumption Relaxation

ACM Trans. Internet Technol.

Providing Realtime Support for Containerized Edge Services • 19

Table 4. Overhead comparison

Functionality
Overhead

EdgeMan Microscaler MArk
Data Collection 0.7 ∼ 2% 5 ± 1% ≥ 2%

Violation Detection <0.01 sec ∼0.2 sec
2∼10 min

Schedule Decision <0.1 sec ∼2 min

In ğ2 we have made the following assumptions to simplify the real-time support problem:

(1) The end devices are connected to the edge network via wired cables.
(2) The edge service resides in one container.
(3) The requests of a service share the same data sizes.
(4) The edge devices have direct power supply.

These assumptions might not hold in other cases and thus will need to be relaxed.
For assumption (1): Although there are many edge scenarios that the end devices are indeed connected to the

edge networks via wired cables (e.g., structural health monitoring [15] and natural hazard monitoring [47]), there
are also scenarios that require wireless connection from end devices to the edge (e.g., building-centralized system
[72] and video interpretation [75]). In these scenarios, the network conditions might not be so stable as wired
connection. Fortunately, there are many research works on throughput or bandwidth prediction [46, 48, 77] for
all kinds of transmission protocols in the literature. Users can build and integrate network models seamlessly in
EdgeManas workload and latency models.
For assumption (2): Some edge devices have limited computing resources and thus are capable of holding

small-scale edge services, which can reside in one single container. There are, however, some other edge de-
vices are equipped with abundant resources, e.g., edge servers. It is beneicial to evaluate EdgeMan in more
complex scenarios, e.g., the containerized edge services are composed of many micro-services or the number of
containerized edge services is large. In such scenarios, a larger scale K8s cluster (e.g., 1 master + 9 workers) may
be necessary. Unfortunately, there are limited real-world edge benchmarks that are suitable for such complex
scenarios according to the survey conducted by Varghese et al. [65]. So, we instead run large-scale simulations
using traces provided by Alibaba cloud and Twitter (see Fig. 11).
For assumption (3): In reality, it is quite hard to estimate how many data a request carries. We can try using

history-based methods to predict or just set the deadline of that service to the worst case (i.e., latency required to
process the empirically maximum data sizes).
For assumption (4): There are also cases that energy consumption matters even with a direct power supply,

e.g., in 4G/5G cell towers or large-scale edge clusters. Similar to assumption (1), there are also works make
efort to save energy for edge computing systems [27, 34, 62]. EdgeMan can enable energy-aware scheduling by
integrating energy proiles and models of worker nodes and service requirements.

7.2 Work in Other Setings

7.2.1 Deadline Setings. In our setting, it is the service users who deine the sensible threshold critical to
maintain quality of service. One way to set the deadline is to multiply the one-shot execution time (the smallest
average execution time of this service on this edge node) to a ratio that is a typical proportion, e.g., 10%. As
EdgeMan focuses on reducing the end-to-end deadline miss ratio for time-sensitive services, so we set a relative
stringent deadline for each of them (e.g., 5% for VC), just for illustration. It is also worth noting that the deadline
settings for services do not afect the efectiveness of EdgeMan.

ACM Trans. Internet Technol.

20 • Wenzhao Zhang and Yi Gao and Wei Dong

7.2.2 Long Services. It is true that edge system operator should make long services (e.g., 10 secs such as VC)
to be served as asynchronous task, which in turn requires users to constantly polling the service results of
the requests instead of using synchronous API calls. However, for end users who actually call the service, no
matter it is a synchronous or asynchronous call, what users care about is the perceived end-to-end latency. It is
possible that EdgeMan latency model will sufer from a performance degradation for services that are called in
an asynchronous manner (e.g., because of the extra overhead of database access), we argue that we can make
compensation for the original models or design typical features for this situation, and we leave it for future
exploration. With proper modiications of the latency model, we believe that EdgeMan can also work well for
these services.

7.2.3 Running and Evaluating EdgeMan over a Larger-Scale Testbed. As we mentioned in ğ6.1, our testbed is only
an illustrative implementation of our design, and we plan to adapt our solution to more complex situations such
as services with multiple modules and use a large-scale cluster to evaluate. We believe that EdgeMan can work
seamlessly in complex scenarios that require larger scale K8s cluster for the following three reasons: (i) The K8s
infrastructure EdgeMan runs on top of can be naturally extended to more workers and cloud testbeds such as
CloudLab [20] can provide enough hardware resources to operate. (ii) In such cases, services are usually spread
out in many containers and current latency models might not be so accurate as before. One naive solution is to
build inter-communication models one-by-one for the service. Or we can extract features from service topology
and build new latency models like Sinan [79]. Moreover, if the containerized edge services are composed of
multiple micro-services, we can tune our latency model like Kraken [12] and StepConf [71], which take explicit
consideration of multiple micro-services to yield better modeling performance. (iii) When dealing with scenarios
with multiple micro-services, it is also beneicial to take explicit consideration of cross-module or cross-machine
interactions. We can update EdgeMan scheduler by leveraging the scheduler plugin of K8s to implement new
scheduling policies as in NetMARKS [74] and Beam [57].

8 RELATED WORK

In the literature, there is a large body of research on performance modeling and service scheduling. Here, we
introduce relevant recent works in containerized edge computing scenario and discuss the diference with
EdgeMan.

8.1 Workload and Latency Modeling

MobiQoR [38] models the service response time and app energy consumption in a white-box manner, considering
features like time of data transfer, task processing, and power. But MobiQoR does not take the efect of multi-
thread execution and dynamic workload into consideration. To tackle this issue, Guan et al. propose Queec [26],
where they use regression techniques to model the execution time and the workload of speciic edge services. In
line with the above works, Loghin et al. [40] give a thorough analysis of the performance in hybrid edge-cloud
processing; they build diferent processing time models under edge-cloud situations considering only the data
size of the transmission. Other works [19, 42] leverage M/M/C queuing model and divides the overall latency
into transmission delay, routing delays, and the cloud processing time. Medel et al. [43ś45] use a Reference Net
to model the lifecycle of a K8s pod. MArk [78] leverages a vanilla LSTM as the default workload model and
uses two heuristic-based methods to capture the characteristics of ML service latency. More recently, Sinan [79]
introduces a hybrid approach that integrates a multi-channel CNN and a Boosted Trees to model end-to-end
latency of container-based applications.

Unfortunately, the aforementioned works cannot adapt to highly dynamical context of CESs. Main reasons are
two-fold: (1) They do not consider unique characteristics (e.g., interval pattern) of workloads for CES service. (2)
The proposed methods fail to achieve reactive model update because they use either heavy-weight simulation

ACM Trans. Internet Technol.

Providing Realtime Support for Containerized Edge Services • 21

tools [43ś45] or require enough data for thoroughly retraining [78, 79]. EdgeMan, on the other hand, proposes
a lexible mechanism that can adapts to dynamic workload patterns by model switching. We also implement
lightweight latency models based on unique features of CESs, enabling dynamic model update.

8.2 Containerized Service Scheduling

Most of existing works on containerized service scheduling focus extensively at pod level, i.e., the minimum
scheduling unit is a pod. These works can be further categorized by scheduling actions.

Firstly, researchers pay their attention on pod assignment (i.e., deciding to deploy a pod on which node in the
cluster). Zhang et al. [70] use native K8s pod scheduling score (i.e., priority, deciding which pod to be scheduled
irst) and propose an improved PSO algorithm to make the decision. Ungureanu et al. [63] propose a scheduler
that encompasses both centralized and distributed functionalities to enable optimal pod placement. KEIDS [34]
formulates an integer-linear-programming-based multi-objective problem to minimize energy consumption
and assigns service that can have less interference with each other in IIoT scenario. While Townend et al. [62]
consider the energy issue in data centers. They incorporate software with hardware models for the K8s scheduler
and yield a 10-20% reduction of power consumption. Chima Ogbuachi et al. [14] look at the K8s scheduling at a
real 5G infrastructure. They introduce a new priority score that considers 5G speciic features to assign pods.
Wang et al. [68] use reinforcement learning to properly place pods and improve the throughput performance
of long-running containerized applications. Rodriguez et al. [52] make a step further. They use a best it bin
packing to assign pods and propose a simple autoscaler to decide whether to start a new node or shutdown an
existing node. More recently, Wojciechowski et al. [74] integrate dynamic network metrics into K8s scheduler
and improve application response time in the cross-node communication scenario, which is superior to work
proposed by Santos et al. [55] that leverage static network condition, i.e., RTT, to optimize pod placement. Zhong
et al. [81] advocate a heterogeneous task allocation mechanism that save the cost by task packing. El et al. [22]
build a model for K8s pod lifecycle and propose a new algorithm that assign pods to heterogeneous cluster
consisting of CPUs and GPUs.
Another line of works concentrate on pod auto-scaling (i.e., dynamically add or reduce the number of pod

replica). Zhao et al. [80] use the ARIMA to predict workload and scale the service accordingly. KubeSphere [11], on
the other hand, focus on fair resource allocation for each service. More recently, Rzadca et al. advocate Autopilot
[54] that uses machine learning algorithms (e.g., exponentially-smoothed sliding window and meta-algorithm)
applied to historical data to optimize both HPA and VPA, yielding better resource utilization and less OOM
efects. Toka et al. [61] assume Markovian request arrival and combine queuing model with a reinforcement
learning-based policies to estimate request number throughout a day and proactively scale the pods. Choi et al.
propose pHPA [16], which proactively bootstrap pods for chained microservices with the help of a GNN-based
model.
To provide real-time support in CESs, only pod-level scheduling is not satisfactory. Requests can still violate

their deadlines without triggering any pod-level scheduler monitors. There are, however, little works pay attention
to request-level scheduling for containerized services. Microscaler [76] introduces a scaling score that considers
request-level features (e.g., the average latency for the slowest 10 percent) and uses Bayesian optimization to
decide the number of pods. KaiS [28] proposes a learning-based scheduling framework that can maximize the
long-term system throughput by dispatching requests, placing and scaling service.

Unlike the above works, EdgeMan focuses on request-level real-time scheduling for CESs. We explore broader
action space, deal with unique challenges, and yield better results.

ACM Trans. Internet Technol.

22 • Wenzhao Zhang and Yi Gao and Wei Dong

9 CONCLUSION

In this paper, we conducted a study of operating real-time CESs. We proposed EdgeMan, a holistic autoscaling
solution that integrates a request-aware lightweight scheduling algorithm and a bottleneck-aware eicient
resource allocation mechanism. Evaluation results show that compared with exiting solutions, EdgeMan yields
signiicant deadline miss ratio reduction (85.9% on average) while incurs acceptable overhead. In the future, we
will consider more practical CES situations such as complex services, scheduling fairness, large-scale testbed
experiment, etc.

REFERENCES

[1] 2022. K8s Scheduling Framework. https://v1-23.docs.kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/.
[2] 2023. Autoscaling on metrics not related to Kubernetes objects. https://kubernetes.io/docs/tasks/run-application/horizontal-pod-

autoscale-walkthrough/#autoscaling-on-metrics-not-related-to-kubernetes-objects.
[3] 2023. Autoscaling on multiple metrics and custom metrics. https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale-

walkthrough/#autoscaling-on-multiple-metrics-and-custom-metrics.
[4] 2023. WRITING EXPORTERS. https://prometheus.io/docs/instrumenting/writing_exporters/.
[5] ahmetozlu. [n.d.]. Tensorlow Object Counting API. https://github.com/ahmetozlu/tensorlow_object_counting_api.
[6] Ahsan Ali, Riccardo Pinciroli, Feng Yan, and Evgenia Smirni. 2020. Batch: machine learning inference serving on serverless platforms

with adaptive batching. In Proc. of ACM/IEEE SC. 1ś15.
[7] Alibaba Cloud. [n.d.]. Alibaba Clusterdata. https://github.com/alibaba/clusterdata/tree/master/cluster-trace-v2018.
[8] Amazon Web Services, Inc. 2023. Container beneits. https://docs.aws.amazon.com/whitepapers/latest/docker-on-aws/container-

beneits.html.
[9] Azure IoT. [n.d.]. Azure IoT Edge: Cloud intelligence deployed locally on IoT edge devices. https://azure.microsoft.com/en-us/services/iot-

edge/.
[10] Seyed Morteza Babamir. 2012. Real-Time Systems, Architecture, Scheduling, and Application. BoDśBooks on Demand.
[11] Angel Beltre, Pankaj Saha, andMadhusudhan Govindaraju. 2019. Kubesphere: An approach to multi-tenant fair scheduling for kubernetes

clusters. In Proc. of IEEE Cloud Summit. 14ś20.
[12] Vivek M Bhasi, Jashwant Raj Gunasekaran, Prashanth Thinakaran, Cyan Subhra Mishra, Mahmut Taylan Kandemir, and Chita Das.

2021. Kraken: Adaptive container provisioning for deploying dynamic dags in serverless platforms. In Proc. of ACM SoCC. 153ś167.
[13] Giorgio C Buttazzo. 2011. Hard real-time computing systems: predictable scheduling algorithms and applications. Vol. 24. Springer Science

& Business Media.
[14] Michael Chima Ogbuachi, Anna Reale, Péter Suskovics, and Benedek Kovács. 2020. Context-Aware Kubernetes Scheduler for Edge-native

Applications on 5G. Journal of Communications Software and Systems 16, 1 (2020), 85ś94.
[15] Soojin Cho, Hongki Jo, Shinae Jang, Jongwoong Park, Hyung Jo Jung, Chung Bang Yun, Billie F. Spencer Jr, and Ju Won Seo. 2010.

Structural health monitoring of a cable-stayed bridge using smart sensor technology: deployment and evaluation. Smart Structures and

Systems 6, 5-6 (2010), 439ś459.
[16] Byungkwon Choi, Jinwoo Park, Chunghan Lee, and Dongsu Han. 2021. pHPA: A proactive autoscaling framework for microservice

chain. In Proc. of APNet. 65ś71.
[17] Anirban Das, Stacy Patterson, and Mike Wittie. 2018. Edgebench: Benchmarking edge computing platforms. In Proc. of IEEE/ACM UCC

Companion. 175ś180.
[18] DeeptiDR. [n.d.]. K-means Demo. https://github.com/DeeptiDR/K-means_demo.
[19] Shuiguang Deng, Zhengzhe Xiang, Javid Taheri, Khoshkholghi Ali Mohammad, Jianwei Yin, Albert Zomaya, and Schahram Dustdar.

2020. Optimal application deployment in resource constrained distributed edges. IEEE Transactions on Mobile Computing (2020).
[20] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson,

Kirk Webb, et al. 2019. The Design and Operation of CloudLab.. In Proc. of USENIX ATC. 1ś14.
[21] EdgeX Foundry. [n.d.]. EdgeX. https://www.edgexfoundry.org/.
[22] Ghofrane El Haj Ahmed, Felipe Gil-Castiñeira, and Enrique Costa-Montenegro. 2021. KubCG: A dynamic Kubernetes scheduler for

heterogeneous clusters. Software: Practice and Experience 51, 2 (2021), 213ś234.
[23] Xenofon Foukas and Bozidar Radunovic. 2021. Concordia: teaching the 5G vRAN to share compute. In Proc. of ACM SIGCOMM. 580ś596.
[24] Cloud Native Computing Foundation. [n.d.]. Volcano. https://github.com/volcano-sh/volcano.
[25] Gartner, Inc. 2020. Predicts 2021: Building on Cloud Computing as the New Normal. https://www.gartner.com/en/documents/3994453/.
[26] Gaoyang Guan, Wei Dong, Jiadong Zhang, Yi Gao, Tao Gu, and Jiajun Bu. 2019. Queec: QoE-aware edge computing for complex IoT

event processing under dynamic workloads. In Proc. of ACM TURC. 1ś5.

ACM Trans. Internet Technol.

https://v1-23.docs.kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/#autoscaling-on-metrics-not-related-to-kubernetes-objects
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/#autoscaling-on-metrics-not-related-to-kubernetes-objects
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/#autoscaling-on-multiple-metrics-and-custom-metrics
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/#autoscaling-on-multiple-metrics-and-custom-metrics
https://prometheus.io/docs/instrumenting/writing_exporters/
https://github.com/ahmetozlu/tensorflow_object_counting_api
https://github.com/alibaba/clusterdata/tree/master/cluster-trace-v2018
https://docs.aws.amazon.com/whitepapers/latest/docker-on-aws/container-benefits.html
https://docs.aws.amazon.com/whitepapers/latest/docker-on-aws/container-benefits.html
https://azure.microsoft.com/en-us/services/iot-edge/
https://azure.microsoft.com/en-us/services/iot-edge/
https://github.com/DeeptiDR/K-means_demo
https://www.edgexfoundry.org/
https://github.com/volcano-sh/volcano
https://www.gartner.com/en/documents/3994453/

Providing Realtime Support for Containerized Edge Services • 23

[27] Jashwant Raj Gunasekaran, Prashanth Thinakaran, Nachiappan C Nachiappan, Mahmut Taylan Kandemir, and Chita R Das. 2020. Fifer:
Tackling resource underutilization in the serverless era. In Proc. of ACM/IFIP/USENIX Middleware. 280ś295.

[28] Yiwen Han, Shihao Shen, Xiaofei Wang, Shiqiang Wang, and C.M. Victor Leung. 2021. Tailored Learning-Based Scheduling for
Kubernetes-Oriented Edge-Cloud System. In Proc. of IEEE INFOCOM.

[29] Tianshu Hao, Yunyou Huang, Xu Wen, Wanling Gao, Fan Zhang, Chen Zheng, Lei Wang, Hainan Ye, Kai Hwang, Zujie Ren, et al. 2019.
Edge AIBench: towards comprehensive end-to-end edge computing benchmarking. In Benchmarking, Measuring, and Optimizing: First

BenchCouncil International Symposium. Springer, 23ś30.
[30] Shihong Hu,Weisong Shi, and Guanghui Li. 2022. CEC: A Containerized Edge Computing Framework for Dynamic Resource Provisioning.

IEEE Transactions on Mobile Computing (2022).
[31] IBM. 2023. The true beneits of moving to containers. https://developer.ibm.com/articles/true-beneits-of-moving-to-containers-1/.
[32] Rajendra K Jain, Dah-Ming W Chiu, William R Hawe, et al. 1984. A quantitative measure of fairness and discrimination. Eastern Research

Laboratory (1984).
[33] Deepak Janardhanan and Enda Barrett. 2017. CPU workload forecasting of machines in data centers using LSTM recurrent neural

networks and ARIMA models. In Proc. of IEEE ICITST. 55ś60.
[34] Kuljeet Kaur, Sahil Garg, Georges Kaddoum, Syed Hassan Ahmed, and Mohammed Atiquzzaman. 2019. KEIDS: Kubernetes-Based

Energy and Interference Driven Scheduler for Industrial IoT in Edge-Cloud Ecosystem. IEEE Internet of Things Journal 7, 5 (2019),
4228ś4237.

[35] James Kennedy and Russell Eberhart. 1995. PArticle swarm optimization. In Proc. of IEEE ICNN. 1942ś1948.
[36] Hermann Kopetz and Wilfried Steiner. 2022. Real-time systems: design principles for distributed embedded applications. Springer Nature.
[37] kubernetes sigs. [n.d.]. kube-batch. https://github.com/kubernetes-sigs/kube-batch.
[38] Yongbo Li, Yurong Chen, Tian Lan, and Guru Venkataramani. 2017. Mobiqor: Pushing the envelope of mobile edge computing via

quality-of-result optimization. In Proc. of IEEE MobiSys. 1261ś1270.
[39] Luyang Liu, Hongyu Li, and Marco Gruteser. 2019. Edge assisted real-time object detection for mobile augmented reality. In Proc. of

ACM MobiCom. 1ś16.
[40] Dumitrel Loghin, Lavanya Ramapantulu, and Yong Meng Teo. 2019. Towards Analyzing the Performance of Hybrid Edge-Cloud

Processing. In Proc. of IEEE EDGE. 87ś94.
[41] Q. Luo, C. Li, T. H. Luan, and W. Shi. 2020. Collaborative Data Scheduling for Vehicular Edge Computing via Deep Reinforcement

Learning. IEEE Internet of Things Journal 7, 10 (2020), 9637ś9650. https://doi.org/10.1109/JIOT.2020.2983660
[42] Sumit Maheshwari, Dipankar Raychaudhuri, Ivan Seskar, and Francesco Bronzino. 2018. Scalability and performance evaluation of edge

cloud systems for latency constrained applications. In Proc. of ACM/IEEE SEC. 286ś299.
[43] Víctor Medel, Unai Arronategui, José Ángel Bañares, Rafael Tolosana, and Omer Rana. 2019. Modeling, Characterising and Scheduling

Applications in Kubernetes. In Proc. of Springer GECON. 291ś294.
[44] Víctor Medel, Omer Rana, José Ángel Bañares, and Unai Arronategui. 2016. Modelling performance & resource management in

kubernetes. In Proc. of ACM/IEEE UCC. 257ś262.
[45] Víctor Medel, Rafael Tolosana-Calasanz, José Ángel Bañares, Unai Arronategui, and Omer F Rana. 2018. Characterising resource

management performance in Kubernetes. Computers & Electrical Engineering 68 (2018), 286ś297.
[46] Jiaying Meng, Haisheng Tan, Chao Xu, Wanli Cao, Liuyan Liu, and Bojie Li. 2019. Dedas: Online task dispatching and scheduling with

bandwidth constraint in edge computing. In Proc. of IEEE INFOCOM. 2287ś2295.
[47] Matthias Meyer, Timo Farei-Campagna, Akos Pasztor, Reto Da Forno, Tonio Gsell, Jérome Faillettaz, Andreas Vieli, Samuel Weber, Jan

Beutel, and Lothar Thiele. 2019. Event-triggered natural hazard monitoring with convolutional neural networks on the edge. In Proc. of

ACM/IEEE IPSN. 73ś84.
[48] Mariyam Mirza, Joel Sommers, Paul Barford, and Xiaojin Zhu. 2007. A machine learning approach to TCP throughput prediction. ACM

SIGMETRICS Performance Evaluation Review 35, 1 (2007), 97ś108.
[49] NetApp. 2023. What are containers? https://www.netapp.com/devops-solutions/what-are-containers/.
[50] Cao Ngoc Nguyen, Jik-Soo Kim, and Soonwook Hwang. 2016. KOHA: Building a Kafka-Based Distributed Queue System on the Fly in a

Hadoop Cluster. In Proc. of IEEE FAS*W. 48ś53.
[51] openalpr. [n.d.]. openalpr. https://github.com/openalpr/openalpr.
[52] Maria Rodriguez and Rajkumar Buyya. 2020. Container OrchestrationWith Cost-Eicient Autoscaling in Cloud Computing Environments.

In Handbook of Research on Multimedia Cyber Security. IGI Global, 190ś213.
[53] Nilabja Roy, Abhishek Dubey, and Aniruddha Gokhale. 2011. Eicient autoscaling in the cloud using predictive models for workload

forecasting. In Proc. of IEEE CLOUD. 500ś507.
[54] Krzysztof Rzadca, Pawel Findeisen, Jacek Swiderski, Przemyslaw Zych, Przemyslaw Broniek, Jarek Kusmierek, Pawel Nowak, Beata

Strack, Piotr Witusowski, Steven Hand, et al. 2020. Autopilot: workload autoscaling at Google. In Proc. of ACM EuroSys. 1ś16.
[55] Jose Santos, Tim Wauters, Bruno Volckaert, and Filip De Turck. 2019. Towards network-aware resource provisioning in kubernetes for

fog computing applications. In Proc. of IEEE NetSoft. 351ś359.

ACM Trans. Internet Technol.

https://developer.ibm.com/articles/true-benefits-of-moving-to-containers-1/
https://github.com/kubernetes-sigs/kube-batch
https://doi.org/10.1109/JIOT.2020.2983660
https://www.netapp.com/devops-solutions/what-are-containers/
https://github.com/openalpr/openalpr

24 • Wenzhao Zhang and Yi Gao and Wei Dong

[56] Royal Sequiera and Jimmy Lin. 2017. Finally, a downloadable test collection of tweets. In Proc. of ACM SIGIR. 1225ś1228.
[57] Chenguang Shen, Rayman Preet Singh, Amar Phanishayee, Aman Kansal, and Ratul Mahajan. 2016. Beam: Ending monolithic applications

for connected devices. In Proc. of USENIX ATC. 143ś157.
[58] Smruthi Sridhar and Matthew E Tolentino. 2017. Evaluating voice interaction pipelines at the edge. In Proc. of IEEE EDGE. 248ś251.
[59] Rainer Storn and Kenneth Price. 1997. Diferential evolutionśa simple and eicient heuristic for global optimization over continuous

spaces. Journal of global optimization 11, 4 (1997), 341ś359.
[60] Tejun Heo. 2023. Control Group v2. https://www.kernel.org/doc/Documentation/cgroup-v2.txt.
[61] Laszlo Toka, Gergely Dobref, Balazs Fodor, and Balazs Sonkoly. 2020. Adaptive AI-based auto-scaling for Kubernetes. In Proc. of

IEEE/ACM CCGRID. 599ś608.
[62] Paul Townend, Stephen Clement, Dan Burdett, Renyu Yang, Joe Shaw, Brad Slater, and Jie Xu. 2019. Improving Data Center Eiciency

Through Holistic Scheduling In Kubernetes. In Proc. of IEEE SOSE. 156ś15610.
[63] Oana-Mihaela Ungureanu, Călin Vlădeanu, and Robert Kooij. 2019. Kubernetes cluster optimization using hybrid shared-state scheduling

framework. In Proc. of ACM ICFNDS. 1ś12.
[64] Peter JM Van Laarhoven and Emile HL Aarts. 1987. Simulated annealing. In Simulated annealing: Theory and applications. Springer,

7ś15.
[65] Blesson Varghese, Nan Wang, David Bermbach, Cheol-Ho Hong, Eyal De Lara, Weisong Shi, and Christopher Stewart. 2021. A survey

on edge performance benchmarking. ACM Computing Surveys (CSUR) 54, 3 (2021), 1ś33.
[66] José Luis Vázquez-Poletti and Ignacio Martín Llorente. 2018. Serverless Computing: From Planet Mars to the Cloud. Computing in

Science Engineering 20, 6 (2018), 73ś79.
[67] Lei Wang, Jin Pan, and Li-cheng Jiao. 2000. The immune algorithm. Acta Electronica Sinica 28, 7 (2000), 74ś78.
[68] Luping Wang, Qizhen Weng, Wei Wang, Chen Chen, and Bo Li. 2020. Metis: Learning to Schedule Long-Running Applications in Shared

Container Clusters at Scale. In Proc. of ACM/IEEE SC. 1ś17.
[69] Yifan Wang, Shaoshan Liu, Xiaopei Wu, and Weisong Shi. 2018. CAVBench: A benchmark suite for connected and autonomous vehicles.

In Proc. of IEEE/ACM SEC. 30ś42.
[70] Zhang Wei-guo, Ma Xi-lin, and Zhang Jin-zhong. 2018. Research on Kubernetes’ Resource Scheduling Scheme. In Proc. of ICCNS.

144ś148.
[71] Zhaojie Wen, Yishuo Wang, and Fangming Liu. 2022. StepConf: SLO-Aware Dynamic Resource Coniguration for Serverless Function

Worklows. In Proc. of IEEE INFOCOM. 1868ś1877.
[72] Thomas Weng, Anthony Nwokafor, and Yuvraj Agarwal. 2013. BuildingDepot 2.0: An Integrated Management System for Building

Analysis and Control. In Proc. of ACM BuildSys.
[73] Darrell Whitley. 1994. A genetic algorithm tutorial. Statistics and computing 4, 2 (1994), 65ś85.
[74] Lukasz Wojciechowski, Krzysztof Opasiak, Jakub Latusek, Maciej Wereski, Victor Morales, Taewan Kim, and Moonki Hong. 2021.

NetMARKS- Network Metrics-AwaRe Kubernetes Scheduler Powered by Service Mesh. In Proc. of IEEE INFOCOM.
[75] Mengwei Xu, Xiwen Zhang, Yunxin Liu, Gang Huang, Xuanzhe Liu, and Felix Xiaozhu Lin. 2020. Approximate query service on

autonomous iot cameras. In Proc. of ACM MobiSys. 191ś205.
[76] Guangba Yu, Pengfei Chen, and Zibin Zheng. 2019. Microscaler: Automatic scaling for microservices with an online learning approach.

In Proc. of IEEE ICWS. 68ś75.
[77] Chaoqun Yue, Ruofan Jin, Kyoungwon Suh, Yanyuan Qin, Bing Wang, and Wei Wei. 2017. LinkForecast: cellular link bandwidth

prediction in LTE networks. IEEE Transactions on Mobile Computing 17, 7 (2017), 1582ś1594.
[78] Chengliang Zhang, Minchen Yu, Wei Wang, and Feng Yan. 2019. Mark: Exploiting cloud services for cost-efective, slo-aware machine

learning inference serving. In Proc. of USNIX ATC. 1049ś1062.
[79] Yanqi Zhang, Weizhe Hua, Zhuangzhuang Zhou, G Edward Suh, and Christina Delimitrou. 2021. Sinan: ML-based and QoS-aware

resource management for cloud microservices. In Proc. of ACM ASPLOS. 167ś181.
[80] Anqi Zhao, Qiang Huang, Yiting Huang, Lin Zou, Zhengxi Chen, and Jianghang Song. 2019. Research on resource prediction model

based on kubernetes container auto-scaling technology. In IOP Conference Series: Materials Science and Engineering, Vol. 569. 052092.
[81] Zhiheng Zhong and Rajkumar Buyya. 2020. A cost-eicient container orchestration strategy in kubernetes-based cloud computing

infrastructures with heterogeneous resources. ACM Transactions on Internet Technology (TOIT) 20, 2 (2020), 1ś24.

ACM Trans. Internet Technol.

https://www.kernel.org/doc/Documentation/cgroup-v2.txt

	Abstract
	1 Introduction
	2 System Model and Problem Formulation
	2.1 System Model
	2.2 Problem Formulation

	3 Event-driven Lightweight Scheduling
	3.1 Offline Modeling
	3.2 Online Scheduling

	4 Bottleneck-aware Progressive Resource Allocation
	4.1 Progressive Bottleneck Metric Modeling
	4.2 Extensible Resource Allocation Mechanism

	5 Implementation
	6 Evaluation
	6.1 Services and The Host Machine
	6.2 Baselines
	6.3 Main Results
	6.4 Overhead

	7 Discussion
	7.1 Assumption Relaxation
	7.2 Work in Other Settings

	8 Related Work
	8.1 Workload and Latency Modeling
	8.2 Containerized Service Scheduling

	9 Conclusion
	References

