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Abstract—IoT application development usually involves sep-
arate programming at the device side and server side. While
separate programming style is sufcient for many simple appli-
cations, it is not suitable for many complex applications that
involve complex interactions and intensive data processing.

We propose EdgeProg, an edge-centric programming approach
to simplify IoT application programming, motivated by the
increasing popularity of edge computing. With EdgeProg, users
could write application logic in a centralized manner with an
augmented If-This-Then-That (IFTTT) syntax and virtual sensor
mechanism. The program can be processed at the edge server,
which can automatically generate the actual application code and
intelligently partition the code into device code and server code,
for achieving the optimal latency. EdgeProg employs dynamic
linking and loading to deploy the device code on a variety of IoT
devices, which do not run any application-specic codes at the
start. Results show that EdgeProg achieves an average reduction
of 20.96% and 79.41% in terms of execution latency and lines
of code, compared with state-of-the-art approaches.

Index Terms—IoT, IFTTT, Integer Linear Programming

I. INTRODUCTION

IoT application development usually involves separate pro-

gramming at the device side and server side. For example,

consider a smart plant application. Users can program an IoT

node like Arduino to sense the soil humidity of a plant. The

sensing data can then be transmitted to the back-end server

for further analysis.

This separate programming style is sufcient for many

simple applications. However, it is not suitable for many

complex applications that involve complex interactions and

intensive data processing.

Complex interactions. Consider the following application:

a user wants to turn on an LED when a sensor attached to a

door detects an open event. With the traditional programming

style, the application logic would be scattered among different

sensor nodes, resulting in increased system complexity and

reduced manageability.

Intensive data processing. Consider a speech recognition

application. A simple way of designing such a system would

deliver all the sensor data to the server running the sophis-

ticated recognition algorithm. This approach may consume

excessive energy due to a large number of transmissions.

A different approach is to run the recognition algorithm on

the IoT device. This approach, however, may cause excessive

delays due to insufcient computation power of the device.

Separate programming requires the programmer to make

proper decisions, which is quite difcult.

We advocate here a different programming approach, mo-

tivated by the increasing popularity of edge computing. In

the edge computing paradigm, a number of IoT nodes can

perform sensing and actuation. These nodes are connected

to a local edge that can perform sophisticated computation.

Moreover, edge servers usually have power supplies and are

less constrained by energy. Edge computing can offer low

processing delay and better privacy.

Taking advantage of the edges, we have developed

EdgeProg—a new programming style and software architec-

ture to greatly simplify IoT application programming, resulting

in a generic IoT system that can be reprogrammed for a variety

of applications without signicant loss of overall system

efciency.

To use EdgeProg, developers write a program in a high-

level language integrating the whole application logic of an

IoT application. This program can further be processed at

the edge server, which can automatically generate the actual

application code and intelligently partition the code into device

code and server code. We call this approach edge-centric

since developers can regard the program as if it runs on the

edge. More importantly, ordinary IoT nodes do not run any

application-specic codes at the start. When the program is

rst executed, the device code will be automatically loaded

onto the memory of IoT nodes. Nevertheless, this edge-centric

programming process raises some challenges:

• How to design an edge-centric language that could sup-

port multi-device interaction and data-intensive computa-

tion?

• How to partition the user-perceived program to achieve

the best delay performance?

• How to design a mechanism so that heterogeneous sensor

nodes can dynamically load the device-side code and

execute it in an efcient manner?

In order to support edge-centric programming and speed-up

the application development process, we design a coherent lan-

guage for specifying the multi-device interaction based on the

widely-adopted programming model, IFTTT (IF-This-Then-

That) [1]. To further enhance the expressiveness and adopt the

data-intensive computation, we extend the traditional IFTTT

syntax with the virtual sensor, which accelerates developers to

design their own data processing logic with machine learning

techniques.

EdgeProg conducts automatic code partitioning which fully

leverages the computation ability of each device and achieves
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optimal end-to-end latency. We abstract the user-written pro-

gram as a data ow graph, formulate the partitioning problem

as an integer programming (ILP) problem and leverage the

efcient solver lp_solve to obtain the optimal partition.

We implement EdgeProg with Contiki OS for its cross-

platform support and the ability to load the optimized exe-

cutable at runtime with dynamic linking and loading tech-

nique. An alternative approach to change the application logic

during its execution is exploiting virtual machines (VMs) or

using a scripting language. Nevertheless, we do not adopt the

alternatives due to they introduce considerable overhead than

dynamic linking and loading.

We implement EdgeProg and evaluate its performance

extensively. Results show that: (1) EdgeProg programming

language can express diverse IoT application logic and reduces

the lines of code needed by 79.41% on average. (2) EdgeProg

achieves a 20.96% reduction on average, and up to 99.05%

reduction across the ve real-world applications under all set-

tings compared with state-of-the-art partitioning systems such

as Wishbone [2] and RT-IFTTT [3]. (3) For application run-

time, the dynamic linking and loading technique outperforms

than design alternatives such as virtual machine (by 9.98X)

and scripting languages (by 6.37X). (4) The proling methods

adopted by EdgeProg achieves 90%+ and 85%+ accuracy

for over 98% test cases. The contributions of this work are

summarized as below:

• We present EdgeProg, an edge-centric programming sys-

tem for IoT applications. The EdgeProg language relieves

developers from scattered application logic and enables

them to express their logic in an easy-to-use way.

• We formulate the code partitioning problem to minimize

the makespan of the task. The partitioning algorithm opti-

mizes the placement of each stage in an application with

consideration of both processing and network latency.

• We implement EdgeProg and evaluate EdgeProg mas-

sively with real-world applications and benchmarks. Re-

sults show that EdgeProg achieves better latency reduc-

tion compared with state-of-the-art approaches and fewer

lines of code.

II. BACKGROUND AND EDGEPROG USAGE

In this section, we briey introduce the techniques used in

EdgeProg, including the dynamic linking and loading of IoT

devices as well as the virtual sensor. Then we present the usage

of EdgeProg with a simple smart home application.

A. Background

Dynamic linking and loading of IoT devices. Dynamic

linking and loading is one of the over-the-air reprogramming

techniques for IoT devices. As its name suggests, reprogram-

ming with dynamic linking and loading technique owns a

linking phase and a loading phase. In the linking phase, the on-

device reprogrammer rst parses the structured information of

a le in standard executable and linkable format (ELF) or its

variants (e.g., CELF [4] and SELF [5]). Then the reprogram-

mer allocates ROM and RAM for the data and text segment in

the ELF le and performs relocation. The relocation is to patch

the data and text segment with real in-memory addresses of

the symbols, which are found in the symbol table or calculated

using the relocation information in the ELF. Once the linking

phase is complete, the reprogrammer writes text segments to

the allocated ROM and copies data segments to the RAM,

which is called the loading phase. So far, the binary is loaded

and ready to be executed.

Compared with the alternatives such as virtual machine [6],

[4], [7] and bootloader [8], dynamic linking and loading

obtains several inherent merits. (1) High long-term efciency

because it runs native code rather than virtual machine code.

(2) Reboot-less update, which is also energy-saving.

Virtual sensor. Opposite to the physical or hardware sensor,

a virtual sensor is a logical entity that abstracts the data

sensed by real sensors which could be located at different

places. Traditional hardware sensors generally produce raw

measurements of physical properties such as the moisture

value or light intensity, which are unprotable unless being

transformed into the high-level domain-dependent informa-

tion. Furthermore, capturing the valuable information usually

requires coordination of multiple hardware sensors, e.g., de-

tecting re hazards with both temperature and smoke sensor.

In order to tackle the limitations above and make sensor data

processing more exible, virtual sensors have been proposed.

For example, SenseHAR [9] advocates a virtual activity sensor

that abstracts the data of several inertial sensors from different

devices using a sensor fusion network. Similarly, LiKamWa et

al. propose a virtual mood sensor named Moodscope [10] to

measure the user’s mental state based on the interactions with

the smartphone. Virtual sensors act as a black-box providing

the indirect measurements or events, which are typically phys-

ically immeasurable, by combining sensed data from several

hardware sensors with data processing algorithms. EdgeProg

embraces this technique as one of the extensions to standard

IFTTT syntax to provide easy-to-use yet expressive handling

for intensive data processing.

B. EdgeProg Usage

We excerpt a simple smart home project named

SmartHomeEnv from smarthome.com to illustrate how

EdgeProg can be used. As shown in Figure 1(a),

SmartHomeEnv takes the temperature and humidity data

from two IoT nodes as input, turns on the air conditioner and

dryer if the two readings exceed xed thresholds. The two

nodes are wirelessly connected to an edge server, which could

be a Raspberry Pi.

In the traditional approach, two sensors are pre-installed

with an application-specic code with functions like periodi-

cally transmitting sensor values to the edge server. The edge

server further processes these readings and interacts with the

sensors with pre-dened interfaces.

With EdgeProg, in contrast, the two sensors are pre-installed

with an “idle” program without any application-specic logic.

The whole application logic is expressed in an enhanced

IFTTT-like language, which is interpreted and processed at
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(a) Pipeline illustration of SmartHomeEnv application.
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(b) Pipeline illustration of SmartDoor application.

Fig. 1. Illustration of execution stages of the two examples. Each block
represents one stage, and stage processing time on the device (and on the
edge node, if necessary) is annotated inside the block.

1 Application SmartHomeEnv{

2 Configuration{TelosB A(TEMPERATURE);
3 TelosB B(HUMIDITY);

4 Edge E(turnOnAC, turnOnDryer);}
5 Rule{IF (A.TEMPERATURE > 30 && B.HUMIDITY > 70)
6 THEN (E.turnOnAC && E.turnOnDryer)}
7 }

Fig. 2. Code snippets of SmartHomeEnv.

the edge server. Figure 2 shows an EdgeProg application of

SmartHomeEnv. Lines 2-4 describe the devices (A, B, E) and

their interfaces (e.g., the HUMIDITY of device B) used in this

application with keyword Configuration. With the infor-

mation above, lines 5-6 specify the application logic following

the IFTTT manner. The edge server automatically partitions

the codes into two components, i.e., device-side components

and edge-side components. The former are compiled to a

loadable module and dispatched to the sensor nodes. Once

notied, the “idle” program in the IoT node can dynamically

load application-specic module for execution.

A key feature of EdgeProg is that it can automatically

partition the whole application codes to optimize the execution

performance, which is increasingly essential for computation-

intensive IoT tasks such as speech recognition and video

surveillance. Figure 1(b) shows such an example in which

the VoiceRecog task may be too heavyweight for resource-

constrained devices such as TelosB or Arduino. EdgeProg will

automatically partition this task to the edge-side if it yields a

better performance than placing it on the device.

III. EDGEPROG OVERVIEW

In this section, we rst discuss the design goals of Edge-

Prog, overview our system design, and introduce some essen-

tial components.

A. Design Goals

• Edge-centric. Compared to the traditional scattered pro-

gramming manner, EdgeProg should provide users with

an edge-centric approach to create the application, which

indicates that users need not to break down the application

logic into pieces during development.

• Latency-aware. The timeliness is recognized as a critical

performance metric of an edge-device coordinated appli-

cation. The ability to deliver a time-optimal solution of

a given input is one of the requirements in EdgeProg’s

design.

• Automatic. By automatic, we mean that EdgeProg should

conceive details which have no benet for users to express

their ideas and removes human from the loop to simplify

and accelerate the application development.

B. EdgeProg Architecture

In Figure 3, we show a birds-eye view of EdgeProg’s system

architecture and functional workow. Users can directly write

the application code in an edge-centric manner, i.e., without

following the distributed programming style or considering

the physical placement of each stage (see §IV-A for details).

The system takes the user code as input, preprocesses and

feeds it into the code partitioner. With the help of the time

prole of each device and our partitioning algorithm, the code

partitioner nds the optimal partition and placement of each

stage. Processed by the code generator, the user-written code

is then transformed into the compilable code and compiled to

executable or loadable binary by the code compiler. Finally,

the executables are disseminated to the devices over the air or

deployed on the edge device if necessary.

User Input. The user input is written in EdgeProg program-

ming model, which centers around the notion of Rules that

species the application logic with sensor data, actuator pre-

sented by the devices, specied by Interfaces, or virtual

sensors’ output, specied by Implementation. Detailed

features of the EdgeProg programming language are specied

in §IV-A.

Code Partitioner. The code partitioner is responsible for

generating the optimal partition of the user-input applications.

We will further give a detailed description in §IV-B.

Time Proler. The timing information of each stage is one

of the critical inputs to the code partitioner. Similar to [2],

[11], EdgeProg leverages a proling phase to obtain the execu-

tion time on different platforms. For the low-end sensor nodes,

we exploit the cycle-accurate simulators such as MSPsim for

MSP430-based nodes (e.g., TelosB) and Avrora for AVR-

based nodes (e.g., MicaZ) to get the timing information. For

the high-end devices such as Raspberry Pi, proling it with

simulators will be less accurate than the low-end ones mainly

due to these powerful devices employ automatic frequency

scaling strategy, which reduces the accuracy of a simulator.

However, executing on the real device and collect raw timing

data is painful and sometimes infeasible due to the hardware

interface limit of edge servers. Hence, we choose a near cycle-

accurate simulator named gem5 for proling high-end devices.

We will evaluate the proling accuracy in §V-E.

Network Proler. Network condition (e.g., bandwidth)

is also a critical metric being fed into the partitioner. In

order to predict the network condition when the application

is deployed, we leverage the multiple-output support vector

regression (M-SVR) algorithm [12] since it generates a series

of prediction results representing the future network condition

in a sequence of intervals. In our temporary implementation,

the network proler contains the prediction of the WiFi and
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Fig. 3. System Overview of EdgeProg.

Zigbee network. Raw observations such as the bandwidth and

received signal strength indicator (RSSI), which is sampled by

the loading agent at 0.1Hz in order not to inuence the regular

network transmission, are fed into the M-SVR. The predictor

outputs the future throughput estimation and per-packet trans-

mission time for further ne-grained time calculation in §IV-B.

Here, since the predicting algorithm acts as a black-box in our

system, EdgeProg can use other prediction models instead of

the M-SVR model.

Code Generator. The generated optimal partition is pro-

cessed by the code generator to translate the high-level Edge-

Prog code into the compilable C code, detailed in §IV-C.

Code Compiler. Fed by the compilable code, the code

compiler generates the executables for the target platform and

starts dissemination. In our current implementation, EdgeProg

supports four MCU architectures (ATmega, MSP, ARM and

x86) with four platforms.

Loading Agent. At the very beginning of our system, there

is no application-specic logic running on the node except a

loading agent. The loading agent periodically communicates

with the edge server for new loadable applications. Once the

application is compiled by the compiler and starts dissemina-

tion, the loading agent on the deployment destination detects,

veries and receives the executable and dynamically runs it.

IV. SYSTEM DESIGN

In this section, we will rst present the design of EdgeProg

programming language and highlight the features which enable

integrated development. Then we will describe how EdgeProg

obtains the optimal partition of the input IoT application with

fully aware of the user-perceived event handling latency, in-

cluding details about the problem formulation and its solution

algorithm. Finally, we demonstrate how EdgeProg generates

the application code to be disseminated to both devices and

edge servers.

A. EdgeProg Programming Language

In order to tackle the problem of existing scattered program-

ming style and accelerate the application development process,

EdgeProg adopts a rule-based domain-specic language (DSL)

for developers to build their applications. An EdgeProg ap-

plication is typically organized as three parts: conguration,

implementation and rule. As shown in Figure 4, we use the

SmartDoor application described in §II-B as an example to

illustrate three critical features in the following.

1 Application SmartDoor{

2 Configuration{
3 RPI A(MIC, DOOR_UNLOCK, OPEN_DOOR);
4 TelosB B(LIGHT_SOLAR);
5 }

6 Implementation{
7 VSensor VoiceRecog("FE, ID"){

8 VoiceRecog.setInput(A.MIC);
9 FE.setModel("MFCC")
10 ID.setModel("GMM", "open.gmm");
11 VoiceRecog.setOutput(<string_t>,"open");
12 }
13 }
14 Rule{
15 IF(VoiceRecog=="open" && B.LIGHT_SOLAR<100)
16 THEN(A.DOOR_UNLOCK && A.OPEN_DOOR)

17 }
18 }

Fig. 4. Code snippets of the SmartDoor application.

Edge-centric programming model. In order to achieve

the edge-centric design goals of EdgeProg, our programming

model should focus users more upon the global behavior other

than implementation details. Hence, EdgeProg enables devel-

opers to organize their application centered with the overall

application logic using keyword Rule. There exist several

DSLs enabling developers to focus on upper logic, as known

as the macro-programming model, in sensornet researches

such as Kairos [13] and Regiment [14]. Nevertheless, existing

works fall at nowadays due to the constraint on application

portability or lack of actuation. IFTTT programming shows

its simpleness and effectiveness in existing researches [15],

[3], [16] when expressing the high-level application logic,

and this programming approach is widely adopted in state-

of-the-art industrial solutions such as Samsung SmartThings

and Microsoft Flow. By early 2017, the website ifttt.com had

gathered over 320,000 IFTTT programs [1] and the numbers

are still increasing dramatically. Therefore, we leverage an

IFTTT-like grammar for enabling users to express their idea in

a unied and explicit manner, as illustrated in lines 14-17 of

Figure 4. Moreover, we augment the IFTTT grammar with

Configuration and Implementation to make users

express the detailed denition and specication of necessary

components used in the Rule part.

Full support of virtual sensor. In order to accommodate

the intensive data processing in nowaday IoT scenario, we

enhance our DSL with the virtual sensor. As we described in

§II-A, the virtual sensor is an efcient approach for developers

to describe complicated data processing algorithms, which

are generally organized in two stages: feature extraction and
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1 VSensor VoiceRecog(AUTO){
2 VoiceRecog.setInput(A.MIC, A.Accel_x, A.Accel_y

, A.Accel_z, B.Light, B.PIR);

3 VoiceRecog.setOutput(<string_t>,"open", "close"
);}

Fig. 5. An example implementation code snippet of an algorithm-agnostic
virtual sensor.

classication. As shown in Figure 4, lines 4-12 list the congu-

ration of a virtual sensor, VoiceRecog, to recognize whether

the input voice fragment produced by interface A.MIC stands

for "open" or not. This virtual sensor is a pipeline of two

stages: FE and ID. The algorithms employed by each stage,

specied by the keyword setModel(), are MFCC (Mel

Frequency Cepstral Coefcient) and GMM (Gaussian Mixture

Model), which are commonly used by voice recognition sys-

tems [17], [18]. Currently, we implement 17 data processing

algorithms, including 12 for feature extraction and 5 for

classication. Although FE and ID are the compositions of

the typical pipeline, applications with more stages and parallel

stages are also supported in our system, such as the EEG

seizure onset detection application described in [2].

Furthermore, there still a lot of complexity for green-handed

developers due to they may have no idea of which sensors are

strongly-related to the expected output and how they related.

To relieve this, we propose the inference-agnostic virtual

sensor. To construct it, developers could merely provide the

set of possibly related sensors and the expected output of the

virtual sensor, as Figure 5 shows. EdgeProg will rst generate

a simple sampling application, and developers should record

the events they desired with it to obtain enough training data.

Then EdgeProg will train an inference model which reects the

relationship between the input sensors and the recorded events.

Finally, the trained model is partitioned and disseminated,

similar to the other virtual sensors.

Explicit data ow. According to our analysis on 101

commonly-used IoT applications from several popular devel-

opment websites such as DFRobot and Hackster.io, we nd

that about 45% lines of code in these projects are written for

data ow construction and interaction, which is a considerable

proportion and increases the project complexity. Furthermore,

multi-device interaction makes the data ow more complicated

due to the it is conceived in the network packet construction.

In a typical IoT application, data ow starts from the pro-

duction of sensor data, processed by several algorithms, then

nally saved in the database or turned into a command back to

the actuator IoT node. Hence, we make the data ow explicit

in these three steps. For data production and nal actuation,

as illustrated in lines 2-4 of Figure 4, developers specify the

data and available actions as interfaces. For example, line 3

illustrates that three interfaces (microphone sampling, door

unlocking and door opening) of a Raspberry Pi named A are

used in this application. The available interfaces of specic

hardware are determined by its vendor or prototype developer.

For data processing, virtual sensors and rules directly use or

call the interfaces, which results in a unied and explicit data

ow.

B. Code Partitioning

The goal of EdgeProg’s code partitioning sub-system is to

divide the user input into appropriate stages and to obtain the

optimal placement of each stage. To accomplish them, we rst

preprocess the user input application into logic blocks, which

represent the computation stages, and generate a data ow

graph of the rules to obtain a full view of the user logic as

well as the stage dependency. Thus, as latency-ware is one

of the design goals of EdgeProg, we formulate the latency

minimizing problem and employ an efcient solver to obtain

the optimal placement of each stage.

The key insight of our partitioning algorithm is that we push

the computation close to the data source as much as possible

and make the best use of the computation ability of each

device to achieve latency reduction. Moreover, the optimal

placement that exhibits favorable computation-transmission

tradeoff could be obtained by EdgeProg beneted from the

intrinsic global view of our programming language.

Logic blocks and data ow graph construction. Due to

the compact nature of our programming language, there are

mainly two gaps that prohibit us from further implementation

and optimization. (1) Some stages may be implicitly dened

and used in the application. For example, in Figure 4, the

interface LIGHT_SOLAR of device B is referenced in the rule.

Thus the stage of sensing it is necessary but being conceived

from the application. (2) The topological information is neces-

sary for optimization, which is also implied in the application.

To ll up the gaps, we construct a data ow graph of an

application whose nodes are represented with logic blocks.

A logic block is supposed to be expressive enough as an

independent building block of the application, i.e., it should

contain adequate information such as placement, algorithm and

necessary parameters for time proling as well as its input

source for code generation. Hence, the logic block is dened

as a tuple <functionality, placement>, as shown in Figure 6.

• Functionality. To express the functionality, we borrow

the idea of tasklet primitives from Tenet [19] such as

SAMPLE, ACTUATE and CONJ, which provides building

blocks for a wide range of data acquisition and processing

tasks. Nevertheless, we further add the algorithms as

primitives (e.g., GMM) to accommodate the virtual sensor

deployment. The data source of a logic block is declared

as the rst argument of the primitive.

• Placement. There are two kinds of code blocks in Edge-

Prog: pinned and movable. The pinned blocks are gen-

erally physical-constrained functionalities. For example,

SAMPLE must be placed on the device. Hence, the

placement is xed for a pinned block, and we use its

corresponding device alias in the logic block. The place-

ment of a movable block, which is potentially deployed

on the device or edge server, is denoted with the question

mark to express the uncertainty.

Except for the explicitly declared logic blocks, some blocks

are also necessary for a complete graph but implicitly con-

ceived in the user application. In order to complete the data
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#7 #9

#1: <SAMPLE(MIC), A>;

#2: <MFCC(1), ?>;

#3: <GMM(2, “open.gmm”), ?>;

#4: <SAMPLE(LIGHT_SOLAR), B>;

#5: <CMP(2, 100, <), ?>;

#6: <CONJ(3, &, 5), ?>;

#7: <AUX(DOOR_UNLOCK), ?>;

#8: <ACTUATE(DOOR_UNLOCK), A>;

#9: <AUX(OPEN_DOOR), ?>;

#10: <ACTUATE(OPEN_DOOR), A>;

#10#8
Pinned Block

Movable Block

Fig. 6. An illustration of EdgeProg logic ow and logic block of SmartDoor
application.

ow graph with the intrinsic blocks, we analyze all the rules

dened in the Rule part with the following strategies:

• For conditions exploiting virtual sensors in the IF state-

ment, we refer to the Implementation part to obtain

the stage pipeline and insert SAMPLE blocks for the input.

• For conditions that only compare sensor values, we

convert it into two stages: SAMPLE and CMP.

• We use a CONJ block representing the conjunction of all

the conditions in the IF statement.

• For each action in the THEN statement, we use two

blocks: an auxiliary movable block AUX representing it

is edge-triggered or local-triggered and a pinned block

ACTUATE representing the action.

Then the data ow graph could be constructed as a directed

acyclic graph (DAG) G(V,E) whose vertices represent the

logic blocks and edges represent there exist a data ow, as

Figure 6 illustrates.

The ILP problem for optimal partitioning. With the help

of the data ow graph G(V,E), we formulate the optimal

partitioning problem as a numerical optimization problem. The

resulting optimal partition could be viewed as assigning each

logic block to its most preferable computational device. We

use a binary indicator Xbisi to demonstrate the partition result

as:

Xbisi =

{

1 logic block bi is assigned to device si

0 logic block bi is not assigned to device si
, (1)

where si represents the possible placement device of block bi.

We would like to borrow the existing code partitioning

algorithm proposed in Wishbone [2] to solve our problem.

Unfortunately, Wishbone algorithms are not feasible in our

problem mainly due to the following two differences:

• Node weights. Consider assigning weights to vertices in

the graph which represents the processing time of the

corresponding logic block. The weight of movable blocks

in our data ow graph is two-fold, indicating the local

and edge-server processing time, while each vertex in the

Wishbone graph only has one weight.

• Optimization goal. The optimization goal of Wishbone

is minimizing the sum of computational budgets and

network bandwidth. Nevertheless, EdgeProg focuses on

latency, which makes the Wishbone formulation no longer

suitable for our problem.

Different from Wishbone, our objective is to minimize the

task execution latency, which leads to minimizing the length

of the longest path in the data ow graph. We dene the

full path as the path from a source vertex to a sink vertex,

denoted as p. We use len(p), δ (p) and P(G) to indicate the

length of path p, the number of vertices in path p, and the

set of all full paths in graph G. Our optimization goal is thus

denoted as minmaxp∈P(G) len(p). Moreover, due to the len(p)
is the sum of data processing and transmitting latency across

all possible placements, our objective is formulated with the

binary placement indicator Xbisi ∈ {0,1} as:

argmin
X

max
p∈P(G)

δ (p)

∑
i=1

∑
si∈Si

XbisiT
C
bisi

+
δ (p)−1

∑
i=1

∑
si ∈Si
s
i
∈S

i

XbisiXbi siT
N
bisisi

(2)

where i, i are the adjacent vertices in path p (i.e., i=i+1).

Si denotes the set of all possible placements of the i-th logic

block. TC
bisi

denotes the data processing time of the i-th block

on placement si, and TN
bisisi

represents data transmitting time

between block bi of placement si and block bi of placement

si . We assume that the data transmission time is negligible

if the two consecutive logic blocks are placed on the same

device. Thus we have:

TN
bisisi

=

{

⌈

qii

riik

⌉

tiik si = si

0 si = si
, (3)

where qii denotes the data size being transmitted on edge (i,

i). riik is a protocol-specic metric representing the maximum

packet payload of protocol k, e.g., the riik of 6LowPAN

network could be 122 bytes. Furthermore, the per-packet

transmission time is given by tiik, which is proled and

predicted by our network proler detailed in §III-B.

Nevertheless, the objective formulation as Equation (2)

is a quadratic minimax problem, which is shown to be an

NP-hard problem [20]. The state-of-the-arts employ heuristic

algorithms to solve it efciently. For example, the most recent

work [21] utilizes a breadth-rst greedy search algorithm to

solve it. While we prefer to employ a solver that is less prone

to local optima. Inspired by McCormick relaxation [22], we

re-formulate Equation (2) as an integer programming problem

(ILP), which could be efciently solved by the standard solver,

e.g., lp_solve. Towards this goal, we rst convert the

quadratic objective function to a linear one by introducing an

auxiliary variable εisisi=Xbisi · Xbi si to replace the quadratic

term Xbisi ·Xbi si in Equation (2). Moreover, the presence of

εisisi causes the introduction of these constraints:

(∀i∈ δ (p)−1,si∈ Si,si ∈Si) εisisi ≥ 0 (4)

(∀i∈ δ (p)−1,si∈ Si,si ∈Si) εisisi ≤ Xbisi (5)

(∀i∈ δ (p)−1,si∈ Si,si ∈Si) εisisi ≤ Xbi si (6)

(∀i∈ δ (p)−1,si∈ Si,si ∈Si) εisisi+1≥Xbisi+Xbi si . (7)
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It can be observed that all the above four constraints are linear.

Whereas our objective function is still in a minimax shape,

which needs further transformation. We thus introduce another

auxiliary variable z and convert the inner max function to a

set of constraints to make it follow standard ILP formulation.

The rewritten ILP objective function is illustrated as:

Objective: argmin
X

z (8)

Subject to:

z≥
δ (p)

∑
i=1

∑
si∈Si

XbisiT
C
bisi

+
δ (p)−1

∑
i=1

∑
si ∈Si
s
i
∈S

i

εisisiT
N
bisisi

,∀p ∈ G. (9)

Furthermore, we add constraints for placement indicator

Xbisi to ensure all the logic blocks are appointed to a specic

device.

∑
si∈Si

Xbisi = 1,∀i ∈ p ∈ G (10)

Thus, any optimal solution of Equation (8) subject to (4)-

(7), (9) and (10) will be the optimal partition of the input

application.

C. Executable Generator

The executable generator in EdgeProg contains two steps:

(1) constructing pieces of compilable code from the optimal

partition and the logic blocks, and (2) compiling the code to

platform-specic executables.

Beneted by the cross-platform nature of Contiki OS,

we could generate the code for edge server (mostly Linux-

compatible hardware) as well as sensing devices in a sim-

ilar manner. Then compile them using the platform-specic

toolchains provided by Contiki based on msp430-gcc for

TelosB and gcc-linaro-arm for Raspberry Pi. The only

difference our generator should take care of is the different

libraries included and sampling APIs used for distinct plat-

forms. Hence, we focus on how to generate compilable code

that runs efciently.

As we mentioned in the last section, the logic blocks are

designed to be expressive enough to act as a building block of

an application, and hence they are transformed to a function

into the nal compilable code. The most difcult issue is

how to organize the function calls in the generated code. The

intuitive approach to accommodate the event-driven kernel and

the protothread technique of Contiki OS is to arrange all the

logic blocks assigned to the same placement in a protothread

and send/receive data if the next block is assigned to another

device. This simple design raises performance drawbacks. The

generated protothread could be too long with this design,

which degrades the system performance due to the non-

preemptive scheduling of Contiki1. Generating one protothread

of one block is also not efcient due to the short protothread

1Contiki supports preemptive multi-threading as a optional library, while
it requires additional multiple stack allocation which is stressful for low-end
devices such as TelosB. Hence we do not adopt this scheme.

incurs much process switching overhead, which will also harm

the overall makespan.

Our approach is based on a code template of Contiki

necessaries and a send thread with receive callback. The

functioning protothreads are generated from graph fragments

of the optimized DAG. The fragments of each device are

obtained by leveraging a depth-rst traverse of the graph which

ends at the placement-changing point. Then we assemble a

protothread with one fragment by calling functions of the

logic blocks. At the end of a thread, it issues an event to

the send thread for data transmission and yields for other

threads. Moreover, based on our time proling, the graph

fragments could be further segmented if it contains several

time-consuming tasks for system health.

V. EVALUATION

In this section, we evaluate the performance of EdgeProg

in various aspects.

A. Experiment Setup

We summarize the ve macro-benchmarks to evaluate our

system in Table I: two sensing applications and three real-

world applications.

• Sense. A common sensing application with outlier detec-

tion using algorithms proposed in [23] and data compres-

sion using the LEC algorithm [24].

• MNSVG. A weather forecast application using an

MNSVG model proposed in [3] to predict temperature

and humidity values.

• EEG. Using the EEG signal to detect seizure [25] ,

taken from Wishbone [2]. It employs ten parallel channels

to process the EEG signal with seven order wavelet

decomposition in each channel.

• SHOW. Detecting and classifying the trajectory of the

device with IMU information and random forest algo-

rithm [26].

• Voice. Counting the number of speakers with signal

processing and clustering algorithms [27].

Baselines Denition. Here we describe the state-of-the-art

edge(cloud)-device interactive system alternatives that we use

to illustrate the advantages of EdgeProg.

• RT-IFTTT [3]. The server does all of the computation.

IoT devices only need to report the sensor value or take

actions under the server’s command.

• Wishbone(0.5, 0.5) [2]. Wishbone is a partitioning system

for sensornet applications whose goal is to minimize a

combined objective of CPU and network workload, which

could be formulated with two weights as (α cpu+β net).

Here (0.5, 0.5) stands for α = β = 0.5, which indicates

CPU and network are of equal importance in this baseline.

• Wishbone(opt.). During our preliminary experiment, we

notice that better latency performance could be achieved

by altering the α and β parameters. Hence, we conduct

evaluations with tuning the parameters with 0.1 step, and

record the best performance as this baseline.
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TABLE I
IMPLEMENTED BENCHMARK APPLICATIONS.

Name Application Sensor # Operators Algorithms

Sense Outlier Detector [23], [24] Temp., Light 8 Average, Matrix multiplication, LEC compression

MNSVG Weather Forecasting [3] Temp., Humidity 4 MNSVG

EEG Seizure Onset Detect. [25] EEG 80 Wavelet decomposition, SVM

SHOW Smart Handwriting [26] Accel. 13 FFT, Random forest

Voice Speaker Count [27] MIC 10 MFCC, Pitch estimation, Unsupervised clustering
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(a) Speedup under Zigbee network.
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(b) Speedup under WiFi network.

Fig. 7. Latency speedup achieved by EdgeProg normalized to the worst-performed baseline. EdgeProg reduces the task latency by 18.2% compared with
WishBone(opt.) and 31.0% with RT-IFTTT on average.
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(b) MNSVG
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(c) EEG
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(d) SHOW
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(e) Voice
Fig. 8. Latency of each macro-benchmark at available cutting points under both networks. Cutting points are arranged to assure that fewer operators are
executed locally when point number gets bigger. We omit the bigger cutting points part of Voice and EEG due to the continuous growth of latency.

B. Latency Reduction

Figure 7 depicts the task makespan of ve macro-

benchmarks under Zigbee (on TelosB node) and WiFi (on

Raspberry Pi) network. We use a laptop with 2.8GHz i7-

7700HQ CPU and 16GB memory as our edge server. Edge-

Prog achieves a 20.96% reduction on average across all

settings, and up to 99.05% reduction in Voice benchmark

compared with Wishbone(0.5, 0.5). Moreover, we have two

main observations according to the results:

(1) Speed up percentage varies considerably among bench-

marks. For example, EdgeProg surpasses for Voice and EEG

benchmarks under both settings while falls at for MNSVG.

This variation mainly due to computation complexity and

network demands of each benchmark. As illustrated in Table

I, EEG is the most complex one with 80 operators, which

promises a larger optimization space to reduce the latency.

Furthermore, each order of its wavelet decomposition halves

input data, which reduces the transmission time of its output

and makes it more protable to local execution. Nevertheless,

EdgeProg struggles against SHOW with 13 operators under

WiFi, mainly due to the parallel layout of its operators, which

leads to fewer valid cut points to partition. As for MNSVG,

a small number of its operators results in its available cut

points is only three. Under this circumstance, EdgeProg still

captures the best cut point for ZigBee, which is neglected

by baseline methods. In summary, data-reduction algorithms

contribute more to latency reduction.

(2) EdgeProg under ZigBee network outperforms than un-

der WiFi. Under the ZigBee network, EdgeProg reduces the

makespan by 30.96%, 45.80% and 18.19% compared with

three baselines, individually. Nevertheless, reduction percent-

ages drop to 0.07%, 30.58% and 0.13% when using WiFi. To

further study this observation, we established a ground truth

by exhaustively running each benchmark at every available

cutting points on our testbed. Figure 8 illustrates the results.

The star icons indicate EdgeProg’s choice for the best cutting

points. We can infer from the gures that as the network speed

grows, data transmission time decreases and data processing

time becomes dominant. Hence, optimization algorithms pre-

fer to ofoad tasks at early stages, which could be deduced

from that the star icons on WiFi bars are more to the left

than ZigBee ones. Consequently, the dominant strategies are

more concentrated on the left, which means the decrease of
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(a) Compare with virtual machines
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(b) Compare with scripting languages

Fig. 9. Run-time efciency comparison between EdgeProg and design alternatives.

TABLE II
DISSEMINATION SIZE AMONG PLATFORMS (BYTE).

App. TelosB MicaZ Raspberry Pi

Sense 4344 6384 4004

MNSVG 2756 3460 2280

EEG 4500 6276 3920

SHOW 22952 28660 14540

Voice 32076 42416 19336

optimization space and leads to closer performance among

baselines.

C. Overhead

Dissemination Overhead. The dynamic linkable and load-

able binary sizes of the macro-benchmarks on three platforms:

TelosB (TI MSP430), MicaZ (AVR ATMega128) and Rasp-

berry Pi 3B+ (ARM Cortex-A53) supported by EdgeProg is

summarized in Table II.

We can see from the data that the binary size of SHOW and

Voice is much bigger than other benchmarks, which is mainly

due to the complexity of the algorithms they adopted such as

FFT, MFCC. Nevertheless, EEG has a smaller size compared

with its large number of operators, which is mainly due to each

of its tunnels shares the same procedures, and each procedure

mainly contains one algorithm, wavelet decomposition, with

different parameters.

Run-time efciency. In this section, we compare the run-

time efciency of the dynamic linking and loading technique

with its alternatives: virtual machines (VMs) and scripting lan-

guages. To eliminate the inherited overhead brought by differ-

ent implementations, we use ve micro-benchmarks from Web

Language Benchmark Game (WLBG). WLBG is a language

benchmark suite maintained by the Debian community. The

ve benchmarks we excerpted are Fannkuch problem (FAN),

Matrix multiplication (MAT), Meteor predicting (MET), N-

Body solution (NBO), and Spectral-Norm calculating (SPE).

We use CapeVM [7], a state-of-the-art Java VM developed for

lightweight execution on embedded devices, as the representa-

tive of VM technique. CapeVM proposes various optimization

strategies to accommodate different applications, and we set

up the experiment with three settings: no optimization, only

peephole optimization and all optimizations. Moreover, we

choose two scripting languages: Python (for popular) and Lua
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Fig. 10. Lines of code comparison between Contiki and EdgeProg. The
"Logic", "Network" and "Others" represent the lines of code for expressing
core application logic, inter-device network and others such as denition and
included headers in Contiki source code.

(for lightweight) along with native Java, which is used in

CapeVM, as our design alternatives of scripting languages.

Figure 9 illustrates the experiment result. Due to CapeVM

do not support multidimensional arrays and oating points, the

MET benchmark could not be implemented with CapeVM. As

shown in Figure 9(a), the VM method introduces a massive

loss of run-time efciency. VM costs more than EdgeProg

when executing the same benchmark by 9.98X on average

and up to 31.32X. As for scripting languages and native Java

illustrated in Figure 9(b), EdgeProg’s dynamic linking and

loading technique still outperforms than alternatives. Python

incurs the most overhead averaged 30.96X and Lua, being

famous for its lightweight, still slows by 6.37X than ours.

D. Programming Language

We intend to compare the lines of code needed to implement

the macro-benchmarks described in §V-A between traditional

Contiki-style and EdgeProg-style. Figure 10 illustrates the

comparison results. Note that due to EdgeProg provides several

data processing algorithms in advance to simplify the develop-

ment procedure, we omit the lines of code for implementing

the algorithms in Contiki-syle source code to achieve fair

comparison and focus more on how EdgeProg helps for

complex device interactions. We can observe that (1) EdgeProg

reduces the lines of code by 79.41% on average. This is

because EdgeProg relieve users of writing complex inter-

device interactions and other grammar necessaries. Moreover,

the virtual sensor and IFTTT abstraction contribute to the lines

of code reduction for application logic. (2) EdgeProg reduces

the development complexity, especially for applications with

more devices. For example, the 80 stages of EEG application
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Fig. 11. Proling accuracy of high-/low-end devices.

consists of 10 EEG devices, and each device owns eight

stages. Programming 10 devices increases the lines of code

multiple times. While the relatively low reduction percentage

of MNSVG (75.68%), SHOW (67.86%) and Voice (72.94%)

applications are partly due to they need only one sensing

device and an edge device.

E. Proling Accuracy

The correctness and accuracy of EdgeProg’s latency-

effective partition depend on the proling method. In this

subsection, we evaluate the accuracy of proling methods for

both high- (e.g., Raspberry Pi) and low-end (e.g., TelosB)

devices that we employ in EdgeProg.

We use mspsim to prole the applications of TelosB, and

a near cycle-accurate simulator gem5 for modern platforms

such as Raspberry Pi. For gem5, we use the system call

emulation (SE) mode with the compiled binary as input to

avoid the additional overhead of its full-system mode. The

results are shown in Figure 11. mspsim could achieve 90%+

accuracy over 97.6% of test cases. Nevertheless, only 87.1%

cases of gem5 reach 90%+ accuracy, which is mainly due to

the frequency uctuation of CPUs and background processes

of Raspberry Pi.

VI. RELATED WORK

EdgeProg borrows heavily from existing works. In the

following paragraphs, We discuss three main categories: IoT

application programming, code partitioning and ofoading, as

well as edge computing.

IoT application programming. The traditional approach

for IoT programming is device-centric [28], i.e., the applica-

tion logic resides on the IoT devices. For example, developers

may write application-specic sensor data processing or multi-

hop forwarding based on IoT operating systems such as

TinyOS or Contiki OS.

To simplify application programming for multi-device in-

teraction, developers can adopt trigger-action programming

like IFTTT on edge/cloud servers so that the whole app

logic resides on the server. The IoT nodes perform general

functions like sensor data sampling and data transmissions.

IFTTT programming is widely adopted in the industry, such

as Samsung SmartThings and Microsoft Flow. It also attracts

a lot of research attention from academia [3], [15]. For ex-

ample, a recent work, RT-IFTTT [3], enhances the traditional

IFTTT syntax. RT-IFTTT’s key idea is to dynamically adjust

the sensor data polling intervals to satisfy both energy and

real-time constraints. EdgeProg inherits from IFTTT’s server-

centric programming model but differs from existing works in

two important ways. First, we enhance the IFTTT syntax with

special consideration on data-intensive computation. Second,

we enable much more exible server-device cooperation by

supporting code partitioning and dynamic code loading on

the device, compared with RT-IFTTT which only supports

adjusting data sampling intervals.

In retrospect, a similar work to ours is Tenet [19] in the

sensor network literature. Tenet assumes a two-tier network

architecture consisting of ordinary sensor nodes and master

nodes. Tenet’s principle is to place the application-specic

logic on the master tier using a dataow program. The master

nodes can dynamically task sensor nodes to process data

locally. In EdgeProg, the edge server plays an equivalent

role to the master nodes. EdgeProg differs from Tenet in the

language design, device-side system support, and performance

optimizations.

Code partitioning and ofoading. Code ofoading to

heterogeneous IoT nodes needs system support at the device-

side. A virtual machine is a common approach to mask

heterogeneity. There is a rich literature in designing exible

and efcient VMs on resource-constrained nodes, including

Mate [6], CapeVM [7], JVM, etc. In addition, a large number

of ofoading algorithms builds on top of VMs, e.g., Tenet [19],

ASVM [29]. Besides VM, there are other more lightweight

approaches such as Linux containers, RPC [30], loadable

modules [31]. We adopt the loadable module approach in

EdgeProg. This is because execution efciency is critical for

energy-constrained IoT nodes and native code runs much faster

than VM instructions [4], [5].

There is a rich literature in code partitioning and ofoading

algorithms for performance optimizations. LEO [32] presents

an ofoading algorithm targets for mobile sensing applica-

tions. LEO makes use of domain specic signal processing

knowledge to smartly distribute the sensor processing tasks

across the broader range of heterogeneous computational re-

sources of high-end phones (CPU, co-processor, GPU and the

cloud). LEO achieves ne-grained energy control by exposing

internal pipeline stages to the scheduler. Queec [30] takes

the user-perceived quality of experience (QoE) into ofoading

decision and makes efforts to achieve the lowest latency.

Wishbone [2] presents a code partitioning algorithm among

resource-constrained sensor nodes and the server to process

data-intensive applications. EdgeProg shares similarities with

many existing algorithms to optimize performance metrics

such as latency or energy. However, EdgeProg uses a differ-

ent formulation considering multiple rules execution, cached

values, and concurrent execution on different IoT nodes.

Edge computing systems. EdgeProg runs on existing edge

platforms, focus on programming IoT nodes connected to

the edge. Most existing work of edge computing focuses on
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how to program the edge itself. In ParaDrop [33], the edge

service deployment is initiated and controlled by a cloud

server. ParaDrop employs the container technology for the

concurrency and isolation between edge services.

As for programming the edge-connected nodes, EveryLite

[34] proposes a lightweight scripting language (37KB of core

runtime size) extended from Lua for developers to build

applications. Nevertheless, EdgeProg chooses the native C ap-

proach to further reduce the run-time overhead. Furthermore,

EveryLight only focuses on programming one node, while

EdgeProg also takes the edge device and connected nodes into

consideration. Considering the coordinated programming for

both the edge and nodes, the most similar and recent work

is DDFlow [35]. Its idea borrows from the existing macro-

programming approaches [13], [14], [36], which aim to build

applications in the whole network point-of-view (POV) rather

than per-node POV. DDFlow presents a visual programming

interface for developers to state their application as a task

graph with Node-RED. EdgeProg employes a more declarative

way with a domain-specic language rather than graphical

programming, and achieves the lowest latency even in the

multi-rule situation while DDFlow only considers optimizing

one application per time.

VII. CONCLUSION

This paper presents EdgeProg, an edge-centric programming

system for relieving developers from detailed implementations

by automatically partitions, generates, disseminates and loads

the program. In EdgeProg, we provide developers, especially

non-experts, with an easy-to-use yet expressive programming

language. Build upon the global view of our language, the

code partitioner nds the most efcient placement for each

part of the application through an ILP formulation, which

could be efcient and optimally solved. The key insight is

that we make the best use of the computation ability of each

device to achieve latency reduction. Evaluations show that

EdgeProg could reduce the task execution latency by 31.65%

for ZigBee networks and 10.26% for WiFi networks. Also,

EdgeProg reduces the lines of code by 79.41%.
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