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Customizing and deploying an edge system are time-consuming and complex tasks because of hardware
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ticle, we present TinyEdge, a holistic framework for the low-code development of edge systems. The key

idea of TinyEdge is to use a top-down approach for designing edge systems. Developers select and configure

TinyEdge modules to specify their interaction logic without dealing with the specific hardware or software.

Taking the configuration as input, TinyEdge automatically generates the deployment package and estimates

the performance with sufficient profiling. TinyEdge provides a unified development toolkit to specify mod-

ule dependencies, functionalities, interactions, and configurations. We implement TinyEdge and evaluate its

performance using real-world edge systems. Results show that: (1) TinyEdge achieves rapid customization of

edge systems, reducing 44.15% of development time and 67.79% of lines of code on average compared with

the state-of-the-art edge computing platforms; (2) TinyEdge builds compact modules and optimizes the latent

circular dependency detection and message routing efficiency; (3) TinyEdge performance estimation has low

absolute errors in various settings.
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1 INTRODUCTION

Recently, edge computing systems emerge as a promising approach to achieving low-latency com-
puting and better privacy protection. Edge computing can be applied in a wide range of applica-
tions including video surveillance [77], autonomous vehicles [46], AR/VR [45], and so on.

Recent edge computing platforms adopt cloud-native techniques such as virtual machines and
containers to hold multiple services and provide isolation. There exist several edge platforms both
in academia and industry. For example, ParaDrop [47] is a specific edge computing platform that
provides computing and storage resources at wireless APs. EdgeX [61] is an open-source project
whose primary purpose is to build an interoperable platform to enable an ecosystem of plug-and-
play components for industrial IoT applications.

While these platforms have already shown their success in a number of applications, we observe
the existing approaches are still insufficient in solving the following problems:

(1) Low-code customization of edge systems. Different from edge applications, an edge system
can be seen as the aggregation of modules. The more modules an edge system has, the more ap-
plications it can support. However, hosting a rich set of modules is usually not feasible, as edge
computing devices (e.g., wireless APs) have limited hardware resources compared with cloud plat-
forms. It is essential that only application-required modules can be quickly deployed on the edge
devices. Moreover, it is also vital to allow users to easily specify the interactions among these
modules.

(2) Accurate performance estimation. Edge devices are in close proximity to IoT devices. As such,
the resource consumption and performance of the entire system depends on the specific deploy-
ment strategy, e.g., the types of hardware the edge system is deployed upon, and the types of
communication protocols connecting IoT and edge devices. It is important that we can estimate
the resource consumption and performance of the entire system and give guidance to developers
on how to deploy the customized systems on edge devices.

To address the above issues, we present TinyEdge, a holistic framework for rapid customiza-
tion of edge systems and IoT applications. TinyEdge inherits many designs from existing works
of literature: (1) Container-based system architecture to achieve good extensibility at a low cost.
(2) Cloud-based backend through which application required edge services can be flexibly down-
loaded and customized to the edge devices. (3) Integration of popular modules like device connec-
tor, time-series database, edge intelligent data analysis services, visualization, and so on.

However, we have several unique considerations.
First, existing container-based modules can not provide enough flexibility in terms of customiza-

tion. They rely on RESTful API [61] or serverless function [56] to call different functionalities or
build interactions, which requires a certain level of expertise and necessary configuration infor-
mation; and their configuration format is not so friendly to the novice, either. TinyEdge abstracts
different module configurations, enables cross-module configuration sharing to reduce the configu-
ration overhead, and provides a unified domain-specific language to reduce the effort of application
coding.

Second, the current cloud-based backend falls short in multi-dimensional consideration of per-
formance modeling. State-of-the-art industrial edge platforms like Azure IoT Edge [56] only pro-
vide a coarse-grained cost model for each module without considering the performance metrics
like workload or latency of an edge system. TinyEdge builds a multi-dimensional performance
model by considering unique features of different modules through sufficient profiling, and selects
from specific machine learning algorithms to obtain higher accuracy.

We evaluate TinyEdge using real-world edge systems. Results show that: (1) TinyEdge achieves
rapid customization of edge systems, reducing 44.15% of customization time and 67.79% lines of
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code on average compared with that of state-of-the-art edge platforms; (2) TinyEdge builds a
precise and practical performance model, considers multi-dimensional information for different
modules.

The contributions of this work are summarized as follows:

— We present TinyEdge, a holistic framework for the low-code development of edge systems.
TinyEdge offers various customizable and compact modules together with a Domain Spe-

cific Language (DSL). We have shown in our article that TinyEdge is beneficial to both
non-expert and expert developers.

— We propose a general methodology to build accurate workload and latency models for the
edge system. This model can be useful for supporting high-level system management includ-
ing auto-scaling and application scheduling.

— We implement TinyEdge and evaluate it using three concrete and representative edge sys-
tems. Results show that TinyEdge achieves low code customization and generates accurate
performance estimation results in terms of various metrics.

The rest of this article is organized as follows: Section 2 presents related works. Section 3 illus-
trates the system overview of TinyEdge, including TinyEdge usage and design overview. Sections 4
and 5 explicate the TinyEdge customization and performance estimation service respectively.
Section 6 presents the implementation details of the TinyEdge system. Section 7 shows the evalu-
ation results. Section 8 concludes this work.

2 RELATED WORK

2.1 IoT, Edge Computing, and 5G/6G

In recent years, IoT technologies have been widely exploited more than ever in many areas, e.g.,
industry [35, 60], 5G [13, 43], and 6G [38, 50, 51]. Such a rapid development of IoT and mobile
Internet leads to the explosive growth of data at the extreme edge of the network. As a result,
cloud computing can no longer satisfy the need for real-time, secure, and low-energy cost analysis
of big data. Under this scenario, edge computing has emerged as a new paradigm that executes
computation at the edge of the network. Different from cloud computing, edge computing can
provide computation resources close to the data sources, which equips with the characteristics of
low latency and high privacy.

Moreover, mobile edge computing (MEC) is a key technology for new generations of mobile
communication such as 5G [28, 30, 66, 68] and 6G [1, 6, 34, 48]. With the advances in telecommu-
nication infrastructures, functions, and applications, we can define more advanced air interfaces
in 5G/6G networks [30]. The emergence of edge computing helps advance the transformation of
the mobile broadband network into a programmable world and contributes to satisfying the de-
manding requirements of 5G/6G networks in terms of expected latency, scalability, and automation
[30]. Another key technology to enable 5G/6G-based application development is the virtualized
radio access network, i.e., vRAN. There is already a bunch of research on this topic to ensure real-
time vRAN tasks [20], provide reliability [23], strike the tradeoff between performance and energy
consumption [3], and conduct other optimizations [7, 16, 37, 74]. With the vRAN technology, de-
velopers can build IoT applications that are equipped with in-depth communication and resource
optimizations.

TinyEdge provides general modules and the DSL for the developers to easily build typical IoT ap-
plications with functionalities including device connection, edge processing, and edge-cloud con-
nection. Although TinyEdge does not provide modules for applications scenarios such as MEC and
5G/6G vRAN, developers can still benefit from our system framework by following the TinyEdge
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schema and the corresponding building process. With the necessary modules, TinyEdge can fur-
ther provide performance estimation services for optimizing the overall system performance.

2.2 Edge Computing Platforms and Middlewares

Due to the prominence of edge computing, a number of edge computing platforms with different
purposes have emerged, targeting stream analysis [2, 63], data sharing [78], security [5], and most
importantly, deploying systems by integrating cloud-edge-end resources [47, 56, 61, 64]. In this
section, we focus on the last category. The comparison between our work and the existing works
will also be discussed.

Cloudlet [64] is devised to instantiate customized service software on edge devices rapidly.
Cloudlet uses VM overlay as a building block of edge computing system, which results in low ex-
tensibility as the OS-dependent nature, users need to create different overlays for the same system
on alternative OSes. Cloudlet also requires OpenStack++ that runs on the Cloudlet Node to carry
out baseVM importation, resumption, and overlay loading.

ParaDrop [47] is an edge computing platform that provides modest computing and storage
resources at the “extreme” edge of the network, whose main purpose is to allow third-party de-
velopers to flexibly create new types of services. ParaDrop consists of three main components—a
hosting substrate that supports multi-tenancy, a cloud-based backend that orchestrates computa-
tions across many ParaDrop APs, and an API that third-party developers can deploy and manage
their own computing functions across different ParaDrop APs. However, ParaDrop does not pro-
vide resource and performance models, and its instance tool is supported on limited hardware or
VM.

EdgeX [61] is an open-source project supported by Linux Foundry. Its main purpose is to build
an interoperable platform to enable an ecosystem of plug-and-play components that unifies the
marketplace and accelerates the deployment of IoT solutions across a wide variety of industrial
and enterprise use cases. The main drawbacks of EdgeX are high redundancy and relatively low
capability. When customizing new systems, EdgeX requires deploying all its core modules; EdgeX
does not have data analysis services, and a lot of manual work is needed to integrate new ones.

Azure IoT Edge [56] is an industrial edge computing platform. There are also other competitors
like AWS Greengrass [59], Alibaba LinkEdge [9], and Baidu IntelliEdge [4], but they are either not
able to integrate third-party modules or are still in a preliminary stage. As an industrial platform
with a powerful cloud backbone, Azure IoT Edge can basically satisfy all we need to deploy an edge
system, but the high integration with the cloud makes it hard to use, users have to get familiar with
a wide range of cloud services before getting hands-on Azure IoT Edge itself.

KubeEdge [10] is another open-source project supported by Cloud Native Computing Foun-

dation (CNCF). KubeEdge aims at extending native containerized application orchestration capa-
bilities to hosts at the edge. KubeEdge can be regarded as a mixture of EdgeX and Azure IoT Edge,
which embraces the heterogeneity of IoT devices and leverages cloud resources. However, the con-
figuration and application development process of KubeEdge is not so friendly to conventional
users.

K3s [11] is a lightweight certified Kubernetes distribution built for IoT and edge computing,
which is currently a CNCF sandbox project. Different from KubeEdge, K3s is an orchestration
framework rather than a development platform. To develop an IoT application, users will have to
build from the ground up using a container engine such as Docker or container.

WasmEdge [12] is a lightweight, high-performance, and extensible WebAssembly runtime for
cloud native, edge, and decentralized applications. Users can write a WasmEdge app in various
programming languages such as Rust, JavaScript, Go, and Python. WasmEdge will provide a safe,
secure, isolated, and containerized runtime to execute the written applications.
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Unlike Cloudlet [64] and ParaDrop [47], TinyEdge leverages the container-based design to
achieve high extensibility. Compared with EdgeX [61], Azure IoT Edge [56], and KubeEdge [10],
TinyEdge provides additional key techniques such as configuration sharing and dependency check-
ing, greatly accelerating the customization process. Different from K3s [11] and WasmEdge [12]
which require building edge systems and IoT applications from the ground up, TinyEdge provides
general modules and the DSL to facilitate the development. Furthermore, we also offer profiling-
based performance models that can help to give useful guidance for system deployment and per-
formance optimization.

2.3 Low-code Development Framework

IoT applications usually require developers to have certain-level expertise in both hardware and
software. There are also many sub-areas like sensing, smart home, smart factory, and so on, which
makes the design considerations of an IoT application more sophisticated. Recent years have wit-
nessed the growth of IoT devices, and researchers in both academia and industry begin paying
efforts to low-code development for IoT applications.

Academia works. TinyLink series [15, 24, 26, 41] are state-of-the-art systems for rapidly de-
veloping IoT applications, which provide easy-to-use APIs that can help users develop IoT appli-
cations (running on IoT devices) without worrying about hardware specifications and complex
interactions between end and cloud. Target at sensing applications, Shen et al. propose Beam [65],
a framework that can let developers specify “what should be sensed or inferred” by introducing
the key abstraction of an inference graph. To simplify development, Beam requires developers to
first manually construct inference graphs with prior expert knowledge and then build sensing ap-
plications upon the graphs. Target at smart spaces, Fu et al. propose dSpace [22], an open and mod-
ular programming framework that aims at simplifying and accelerating smart space application
development by introducing two abstractions (i.e., digivice and digidata) and three primitives (i.e.,
Mount, Pipe, and Yield). dSpace, however, mainly focuses on the rapid development of developing/-
composing high-level “virtual entities” like a room or a house, rather than building out-of-the-box
edge systems.

Industry solutions. Tuya IoT platform [33] provides interconnectivity standards to support:
(1) zero-code development for COTS devices in a drag-and-drop manner and (2) low-code develop-
ment for MCU-based devices. Home Assistant [32] is an open-source home automation platform
that can connect and control a wide range of COTS IoT devices. Defining automation, i.e., policies
is the key development method in Home Assistant, which requires little coding expertise and lines
of code. Node-RED [21] is a lightweight flow-based programming tool that connects hardware
devices, APIs, and online services. Users can easily build an IoT application in a web front-end
with Node-RED modules. IFTTT [31] is the leading no-code platform on mobile where users can
define rules intuitively. A rule can be triggered by different events (e.g., receive a new e-mail,
the light is opened) and take diverse reactions such as sending a message or actuating an IoT
device.

TinyEdge focuses on the rapid composition of edge systems (running on edge devices), which
is orthogonal to solutions that focus on IoT devices (e.g., TinyLink [15, 24, 41] and Tuya IoT plat-
form [33]). Compared with cloud-device integrated solutions (e.g., TinyLink 2.0 [26], Beam [65],
and dSpace [22]), TinyEdge provides essential services (e.g., connector services) for IoT devices
that do not have direct Internet access (e.g., via BLE or ZigBee). Compared with general-purpose
development frameworks using IFTTT policies or flow-based programming (e.g., Home Assistant
[32], IFTTT [31], and Node-RED [21]), TinyEdge’s DSL has higher expressiveness in that it can
describe complex data- and control-flow besides simple “if this then that” rules.
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Fig. 1. Workflow overview of TinyEdge.

2.4 Performance Modeling

Performance modeling plays an important role in various systems. It not only provides essential
information for system developers about how well a system operates but also gives users aware-
ness of distinct aspects of a system. Although there are a number of performance metrics that are
valuable to analysis a system, we focus on the latency and workload in our scenario.

MobiQoR [44] is an optimization framework that minimizes service response time and app en-
ergy consumption, giving the offloading strategy for a series of edge nodes. The service response
time and app energy consumption are modeled in the white-box manner, considering features
like time of data transfer, task processing, and power. But MobiQoR does not take the effect of
multi-thread execution and dynamic workload into consideration, to tackle this issue, Guan et al.
propose Queec [25]: a QoE-aware edge computing system, where they use regression techniques
to model the execution time and workload of specific edge computing applications like speech
and face recognition. Maheshwari et al. [53] present a scalable edge cloud system model that in-
corporates M/M/C queuing model as its computation model and divides the overall latency into
transmission delay, routing node delays, and the cloud processing time.

Unlike the above works, TinyEdge proposes a hybrid solution to combine the merits of both
black- and white-box methods and integrates the resource constraint into the model, making the
estimation results more reliable.

3 TINYEDGE OVERVIEW

In this section, we will give an overview of TinyEdge in terms of system usage (Section 3.1) and
design (Section 3.2).

3.1 TinyEdge Usage

In this subsection, we will illustrate how to use TinyEdge. We use a typical IoT system as an
example to present the overall process when using TinyEdge. This system can pull sensor data
through the MQTT protocol, store the data in InfluxDB and visualize them by Grafana. As shown
in Figure 1, a user needs to perform the following eight steps:

— Step 1 and 2 . Select MQTT Connector, InfluxDB, and Grafana then provide necessary
configurations ((Figure 4), detailed in Section 4.1). The user will get a snapshot of module
profiles ((Figure 6), detailed in Section 5.1) that contain the approximate minimal storage
and memory consumption of the customized system.

— Step 3 and 4 . Based on the resource consumption, the user can choose to prepare sat-
isfactory hardware or virtual platform to run the customized system and upload the hard-
ware specifications to get specific performance models rather than general ones with default
values.
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Fig. 2. Deployment package directory of the IoT system.

Fig. 3. Architecture overview of TinyEdge.

— Step 5 and 6 . Then the users will get the deployment package that consists of an OS-
specific deployment tool (detailed in Section 6) with other necessary supplementary config-
uration files for each module. Figure 2 shows the deployment package directory architecture
in this case. Necessary configuration files are stored under separate directories for each mod-
ule. composer.py in the root directory is a script that aggregates module configurations; while
deploy.sh is the deployment tool to set up the environment and the customized edge system.

— Step 7 and 8 . After deploying the system, the user writes application code ((Figure 5),
detailed in Section 4.2) to specify the interaction logic, which may trigger a system update.

We can see that TinyEdge workflow is clean and short; users can customize and deploy typi-
cal edge computing systems quickly. Performance models can provide a rough estimation of the
customized system, which help users to choose a satisfactory hardware prototype more easily.
Furthermore, TinyEdge deployment tool can automate the process of system setup and save time.

3.2 TinyEdge Design

Figure 3 depicts the overview of TinyEdge, including the customization service (Section 4) and the
performance estimation service (Section 5). The module list serves as the input of TinyEdge and
it is passed to both services:

ACM Transactions on Internet Technology, Vol. 23, No. 1, Article 15. Publication date: February 2023.
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— Inside the customization service, the configuration generator automatically generates the
low-level configurations by considering the typical configuration format of Dockerfiles and
Docker-compose files for different modules, as well as the dependency between them. The
deployment package for the target customized system will then be generated.

— Inside the performance estimation service, the performance models takes module profiles
as inputs, which include the workload and latency model of different modules. The perfor-
mance metrics under different hardware specifications for the target customized system will
then be generated.

Note that the container-based system architecture makes it possible to integrate other important
edge services. For example, we can easily add off-the-shelf secret store, API gateway and user-role
access control service to enhance system security. Furthermore, the incorporation of Kubernetes
enables multi-tenant coordination among heterogeneous edge devices and better utilization of
extended computing resources like GPU.1 The above features make TinyEdge a more flexible and
reliable system.

4 CUSTOMIZATION SERVICE

The main purpose of TinyEdge customization service is to provide a software and hardware agnos-
tic, easy-to-use interface that users can easily ensemble a scenario-specific edge system with much
less effort. In this section, we will explicate this service with respect to system-level customization
(Section 4.1), and application-level customization (Section 4.2).

4.1 System-level Customization

In the system-level customization phase, a user needs to select modules and provide the neces-
sary configurations for them. To facilitate system-level rapid customization, TinyEdge proposes
configuration reduction methods to reduce the system configuration time.

Configuration classification. For container-based modules, existing edge computing plat-
forms not only require users to learn module-specific configurations that have many items but
also to master the complex format of container-specific configurations. To enable rapid configu-
ration, we pack up module configurations into (1) basic configurations that a module needs to
operate normally and (2) advanced ones that deal with more complex situations or contain perfor-
mance requirements with default values. To handle sophisticated configuration formats, we main-
tain a configuration mapper between TinyEdge and Dockerfile/Kubernetes. As a result, users only
need to provide basic configurations to run the customized system and fill in the advanced ones
only when necessary with much less effort without knowing the detailed configuration format of
Dockerfile/Kubernetes.

We revisit the example shown in Section 3.1. Before applying TinyEdge configuration classifi-
cation technique, a novice user will first need to learn the configuration format of both InfluxDB
and Docker/Kubernetes, then provide the information according to his own requirement from all
configuration items listed on the left side of Figure 4, and repeat this procedure for all modules be-
fore he can finally deploy and run the customized system. While after applying the technique, the
user only needs to follow the instruction of each TinyEdge module with a unified configuration
form.

Global configuration sharing. In modular settings, sometimes one module will share parts of
its configurations with another, especially for database modules. While existing edge computing
platforms treat each Docker-based module as a standalone daemon, they either use RESTful API

1https://kubernetes.io/zh/docs/concepts/configuration/manage-resources-containers/#extended-resources.
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Fig. 4. An example of configuration classification and sharing.

or serverless function to exchange parameters at runtime or configure it multiple times at startup.
The problem is twofold: (1) the shared configurations need to be set multiple times; (2) if mod-
ule A changes its shared configurations while B is not, B may fail to operate normally. TinyEdge
uses a placeholder in the form of “#<module name>.<configuration name>” to replace the shared
configurations so that the user can only fill in the shared configuration once and TinyEdge con-
figuration generator will automatically handle the others. Moreover, the shared configuration can
also be overloaded by using the “@overload” annotation.

We revisit the example shown in Section 3.1. If the user wants to use Grafana to visualize the
time-series data stored in InfluxDB, he will need to provide host, dbname, dbport, usrname, and
passwd for both InfluxDB and Grafana. As Figure 4 shows, Grafana needs the configuration of
InfluxDB, and the user only needs to provide the shared configurations once in InfluxDB, those in
Grafana will be generated by TinyEdge when used at runtime.

4.2 Application-level Customization

In the application-level customization phase, a user first writes application code using TinyEdge
DSL. TinyEdge runtime will parse the code into different parts and generate message queue topics,
then distribute each part to designated execution modules or engines.

TinyEdge DSL. Existing edge platforms require users to learn how to use each module and pro-
gram with them, which usually needs to co-operate among different programming languages. To
facilitate application-level rapid customization, TinyEdge proposes a DSL that abstracts TinyEdge
modules’ functionalities to provide a general coding form and reduce programming time. TinyEdge
DSL can be divided into the following three parts:

1 Module function call. TinyEdge creates a virtual class to wrap all functions that belong to
a module. Like get_data() of MQTT_Connector and visualize() of Grafana in Figure 5.

2 Message routing. Within this virtual class, there are two virtual functions that each module
has to implement, which are Pub() and Sub(). The Pub() function takes charge of wrapping

ACM Transactions on Internet Technology, Vol. 23, No. 1, Article 15. Publication date: February 2023.
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Fig. 5. A python-like application code snippet of the IoT system.

data and creating topics in the TinyEdge message queue engine. While the Sub() function is
responsible for subscribing topics from the message queue engine and unwrapping data.

3 Serverless function. Serverless is a class that used to define the programming language,
version, and requirements. After filling in the serverless code template, function get_results()

will pass the language configuration and application code to TinyEdge serverless engine,
execute the serverless function and get the results.

The different alternatives of the serverless function are generally referred to as RESTful API. Al-
though RESTful API shares the merit of ease-of-programming, the serverless function still shows
better potential as it (1) has comprehensive infrastructures both in the industrial and open-source
community; (2) thoroughly decouples functional and service code modules; (3) has a little require-
ment of module backend, which makes it easier to implement; (4) do not need to operate all the
time.

5 PERFORMANCE ESTIMATION SERVICE

After building an edge computing system, the developer may wonder what’s the performance of
this customized system. Given the performance estimation, developers are able to come up with
intelligent scheduling policies like workload offloading, auto-scaling, and access control. Consider-
ing device and communication protocol heterogeneity, performance estimation of edge computing
systems is a hard nut to crack. Existing industrial edge computing platforms only gives cost models
for their edge services, which shed little lights on how to build or select hardware specifications
and connection methodologies that can yield acceptable performance.

TinyEdge performance estimation service aims at giving users awareness of the resource con-
sumption or key metrics like the latency, workload of the customized system. Towards this,
TinyEdge includes module profiles (Section 5.1) and builds multi-dimensional models to describe
key metrics of the customized system (Section 5.2).

5.1 Module Profile

TinyEdge module profile is the key information source for the performance models. A module
profile contains category, customization information (functionality and configuration), resources
requirement (memory, storage, and connection), and performance models for specific functions.

ACM Transactions on Internet Technology, Vol. 23, No. 1, Article 15. Publication date: February 2023.
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Fig. 6. An example of three module profiles for the IoT system, where config stores basic and advance con-

figurations; functionality stores the choice of module functionality; model stores the route to the module

performance model; requirement stores resources (including connection) requirement.

TinyEdge splits modules into three categories in accordance with their functionalities: (1) Sys-
tem modules that make up the essential part of an edge system, like device management, logging,
authentication, database, and so on. (2) Processing modules that take charge of the computation
part of an edge system, like data filter, video analyzing, object recognition, and so on. (3) Connect-
ing modules that are responsible for accessing IoT devices or transmitting data to the cloud, like
HTTP, MQTT, Bluetooth connector, and so on.

Customization information is extracted at the system-level customization stage. It records func-
tionality and configuration of each user-selected module, serving as an input of TinyEdge con-
figuration generator that maps high-level configuration into specific formats like Dockerfile or
Kubernetes.

Unlike customization information, resources requirement and metrics models are given offline.
We sample the average resource consumption and build metrics models for each module at differ-
ent hardware specifications. While connection describes the hardware requirement that a module
needs to communicate with others. For example, a Bluetooth connector requires an underlying
hardware chipset to operate.

5.2 Performance Models

There are plenty of performance metrics that can describe different facets of a system like latency,
workload, accuracy, energy, and so on. TinyEdge chooses to model latency and workload for the
following two reasons: (1) they are both general performance metrics that can be inferred from
a wide range of modules; (2) they can describe two essential edge computing features, which are
low latency and device heterogeneity. Although accuracy is a critical metric, especially for ma-
chine learning modules, the results tend to have a little variance to the environment. It is usually
module-specific factors that have the most prominent influence. As a result, it is hard to build a
general model for accuracy. As for energy, TinyEdge focuses on edge nodes powerful enough to
run containers, which are usually equipped with a power supply.

Existing solutions like [25] and [53] have not considered the number of access devices, which
could potentially affect both latency and workload on the edge, especially in multi-device and
multi-protocol scenarios; on the other hand, over-simplifying the problem causes inferior results.

Workload model. The main functionality of the workload model is to give a general form of
workload under different types of hardware platforms (in terms of system architectures or CPU
models) for distinct IoT applications. Due to the heterogeneity, TinyEdge uses black-box methods
to build the workload model.
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TinyEdge takes the workload vector and hardware features as input and uses the load average
that represents a fraction of CPU consumption as the model output for conformity. The workload
vector is defined by the module developer (like frame sampling rate and resolution for image pro-
cessing modules, the number of accessing end devices, and transmission data size for connecting
modules);

While the hardware features mainly include hardware architectures (x86, ARM, and so on.) and
the CPU specifications (the number of cores and threads, main frequency, maximum frequency, and
so on), which will serve as inputs of a compensation function that map hardware features to the
workload variation that is compared with the average workload getting under baseline hardware
resources. Then we have

ωi = дi (wi ) + c (H ),

where ωi represents the workload vector of module i , дi is the workload model for module i that
built upon some kinds of machine learning methods, similarly, c (H ) is the compensation model
that takes different hardware specifications H as input and outputs the compensated value. Given

the workload models, we can get a general form of workloadW for application A:W =
∑i ∈A

i=1 ωi .
Latency model. The main functionality of the latency model is to predict the end-to-end la-

tency (from the time that a request is generated to the time that it is finished) of an IoT application.
Different from workload, latency models can sometimes be well described in a more formal math-
ematical way, so we use a hybrid black- and white-box methods to build the latency model. More
specifically, we use black-box methods to estimate the execution time while leverage white-box
methods to characterize the waiting time.

The edge device is running an OS where requests of different modules are coming from time
to time. Therefore, as the number of requests in the system increase, workload of the OS will
gradually rise to the maximum level. Finally, some of the requests will have to queue till they can
be processed. This scenario can be well analyzed by the queuing theory. Unlike previous works
[52, 53] that using M/M/1 or M/M/C queuing model, TinyEdge leverages a more realistic model
which encode existing workload by using Mα /Mβ/C queuing model [40].

Traditional Mα /Mβ/C means the α requests arrive at a rate of λ, the executors can deal with β
requests at a rate of μ, both arrival and execution time follow exponential distribution; there are
C executors in the system. In order to integrate workload into queuing model, TinyEdge treats
α as the workload requirement (in terms of load average) of module i , regards β as the available
workload in the system. With the definition above, we can get the waiting time of module i in the
system, i.e., twait

i as follows:

twait
i (wi , μ, λ) = f Pi (дi (wi )) +

ρWmax

μ ·Wmax ! · (1 − ρ)2
P0,

where fi is the execution latency model for module i that built upon some kinds of machine learn-
ing methods,Wunit ,Wmax is the unit and maximum level of workload, respectively. P0 (the proba-
bility of no request in the system), and ρ (system intensity) are defined as follows:

P0 (ρ) =
⎡
⎢
⎢
⎢
⎢
⎣

Wmax−Wunit∑
n=0

(Wmaxρ)n

n!
+

(Wmax )Wmax

Wmax !

(
ρWmax

1 − ρ

)⎤
⎥
⎥
⎥
⎥
⎦

−1

.

ρ (λ, μ,α , β ) =
αλ

Wmax βμ
.

Given the queuing model, we build two different types of latency models for processing and
connecting modules separately, considering the unique features of these two types of modules. We
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omit the latency model of system modules because they usually work as the coordinator between
the above two types of modules, which tend to take up more time.

(1) Latency model of processing modules. For processing modules, the latency mainly consists
of the execution time (estimated by a black-box method given the workload) plus the waiting
time (estimated by the queuing model). Note that we have to assume the hardware resources like
memory or storage are sufficient for a module in terms of building a performance model, otherwise,
the model will be meaningless. We have:

ιi = f Pi (дi (wi )) + twait
i (wi , λ, μ ).

(2) Latency model of connecting modules. For connecting modules, the latency is mainly com-
posed by data transmission time, RTT, execution time, and the waiting time. We have:

ιi =
Di + Do

B
+ RTT + f Ci (дi (wi )) + twait

i (wi , λ, μ ),

where Di , Do represents the size of input and output data, B is the current bandwidth.
After building different latency models for processing and connecting modules, we can get a

general form of latency for an IoT application A: Li =
∑i ∈A

i=1 ιi .
Function f (), д(), or c () for latency, workload and compensation model is decided by a function

selector. We implement several machine learning algorithms (like linear regression, SVM, and ran-
dom forest) and will carry out a thorough test for models of each module under different hardware
resources to select the best one to store.

Note that our current design assumes that a request is executed sequentially. There might be
cases that it is run in a multi-threaded way. As such, we can first construct a request execution
graph that aggregates modules run in parallel into one “stage”. Then we use the latency model for
each module to obtain the execution time of a stage by calculating the maximum value within that
stage. Finally, the resultant overall execution time can be expressed as follows:

|Staдe |∑
i=1

max
1≤j≤ |Staдei |

|latencyj |,

where j represents a specific module in Staдei .

6 IMPLEMENTATION

In this section, we present some details of TinyEdge about how modules are selected, deployed,
and interacted with each other on the edge device.

6.1 Module Selection

In order to decide which modules to include, we conduct an investigation of more than twenty
edge-computing-related articles [5, 8, 14, 25, 27, 29, 42, 44–47, 54, 55, 63, 69–73, 76–78, 80] and find
that the main functionalities of edge systems for IoT applications include: (1) connector for both
IoT devices and cloud services, (2) data processing (e.g., stream analytics and machine learning),
(3) data storage (e.g., SQLite, Redis, and InfluxDB), (4) security (e.g., authentication, encryption,
and access control).

We implement the HTTP, Modbus, and Bluetooth connector, integrate EMQ [17], a popular
open-source MQTT broker as our MQTT connector for (1); develop a simple data filter module
and an object recognition module based on ResNet for (2); integrate MySQL for (3); implement a
device authentication module for (4).

Moreover, edge systems are born to embrace a variety of heterogeneous IoT devices, the generat-
ing data is usually time serial. But most of the industrial edge platforms provide neither the device
management module nor the timeseries database at the edge. So we implement a lightweight device
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management module and incorporate InfluxDB (timeseries database), MongoDB (semi-relational
database), and Grafana (a visualization tool for timeseries data) to compensate for the issue.

Then we build a container registry, integrating all modules above. Note that users can select
the module(s) both in the TinyEdge container registry and the Docker Hub. However, TinyEdge
temporarily does not provide the customization option for modules from the Docker Hub; the
recommendation service will not take those into account, either.

6.2 Optimization Techniques

Rapid circular dependency checking. As we know, exhaustively checking package dependency
can be a tedious and time-consuming work. One strawman method is using a hash set that store
dependent module, which exchange storage for speed. Another method is the fast-slow pointer
algorithm, which sacrifice speed to save storage. In our scenario, edge system update rapidly so
we require faster detection. Towards this, TinyEdge proposes a hybrid hash based fast-slow pointer
method that caches dependent modules in the hash set at system set-up stage, during which the
fast-slow pointer is used to detect circular dependency. While at system update stage, the hash set
method is used when the number of update or addition modules is below a certain threshold.

Topic reduction in message queue. Always generate topics as the user defines may waste
the system resources. For example, within the same application, multiple modules subscribe from
different topics that are published by the same module, and we have to send the same data twice
to different topics. TinyEdge proposes a rule-based topic generation technique to dynamically
reduce the number of topics. Specifically: (1) Within the same application, only define one topic
for multiple modules subscribe from the same publisher module. (2) Across different applications
in the same system, dynamically merge topics that have the exact same subscriber module. As a
result, the number of topics will be reduced and TinyEdge can leverage existing load balancing
techniques to balance the traffic load of a topic.

Module compaction. Recall that each TinyEdge module is wrapped in a single Docker image.
In order to reduce module pulling time, TinyEdge adopts a series of techniques to produce a much
smaller modules with little impact on the functionalities. To keep a slim module: (1) TinyEdge
borrows the best practice in the Docker community to use smaller base image and optimize the
writing style of Dockerfile. (2) TinyEdge flattens a built image with tools like Docker-squash [36]
or Compact [75] to run clean up commands in the container, squash multiple image layers into
one, and finally generate a compact Docker image.

Optimized runtime. An edge computing platform runtime is responsible to interact with the
cloud, enabling deployment and module communication within the edge, and so on. Current edge
runtime used in Azure, KubeEdge, and EdgeX integrates too much functionalities like data caching,
device management, and message routing. However, these functionalities can be redundant for
specific scenarios. While TinyEdge aims at providing a flexible solution, which only offers two key
functionalities, i.e., cloud-edge interaction and service management, keeping other functionalities
in the module market. Users can pull other functionalities from the cloud when they need.

7 EVALUATION

In this section, we present the evaluation of TinyEdge. Section 7.1 presents the evaluation cases.
Sections 7.2–7.5 shows the main results in terms of the system-, application-level customization,
performance modeling, system optimization, and overhead.

7.1 Evaluation Cases

We use three real-world cases to evaluate different facets of TinyEdge. They are representa-
tive because they (1) cover the main aspects of edge computing dataflow, i.e., data collection,
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Table 1. Deployment Component Comparison Between TinyEdge and State-of-the-Art Edge Platforms

processing, visualization, and storage, which have already widely testified in the field and adopted
in edge computing benchmarks [54]; (2) are comprehensive enough to support a system composed
of device management, authentication, IoT device connector, in addition to above data-related
functionalities.

— Data connection and visualization (IoT): Reading data from a temperature and humidity
sensor through different transmission protocols (including HTTP, MQTT, BLE, and Modbus),
then storing the data in InfluxDB and visualizing them via Grafana.

— Intelligent data processing (EI): Receiving data input through HTTP, posing them to dif-
ferent edge intelligent applications (including object recognition, speech-to-text conversion,
text-audio synchronization, and real-time face detection), then returning the results.

— A hybrid-analysis system (GIoTTO): It is part of the CMU GIoTTO project [18] that can
receive sensor data via HTTP and MQTT protocol, store data in InfluxDB and visualize
via Grafana, support virtual sensors’ training and testing, store physical and virtual sensor
information in MySQL.

7.2 Customization Related Results

Above all, we qualitatively compare the deployment component of the aforementioned evaluation
cases using TinyEdge, EdgeX, Azure IoT Edge, KubeEdge (which our previous work [79] did not
consider), Cloudlet, and ParaDrop (from literature). Table 1 summaries the modules information
of each case with respect to each platform, where � means the platform has the module with
the exact same capabilities; � means only a similar module is available and extra configuration
is needed; - means the module is not required in this case; × means the platform does not have
the module yet. For fairness, we use built-in modules that are marked with � and � in baseline
platforms; and replace modules marked × with TinyEdge modules.

Note that we compare TinyEdge’s customization results only to EdgeX, Azure IoT Edge, and
KubeEdge because they represent state-of-the-art industrial edge computing platforms that are
relatively mature, support third-party modules integration, barely have hardware dependencies,
and more importantly, use Docker as the backbone.

System-level customization. We abstract the end-to-end system customization into three
stages, environment set-up (container and edge system/application project creation), configuration
for modules, and deployment (container image building and pulling) three stages. Each stage was
carried out by volunteers with different experiences in edge development multiple times followed
by a step-by-step manual and the averaged results are given. Figure 7(a) shows the system-level
customization time comparison of the four platforms. We only present the overall result rather
than the breakdown of each module for the sake of clarity.
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Fig. 7. Customization service-related results.

We can see that: (1) With the help of configuration partitioning and sharing, TinyEdge module
configuration time is obviously shorter than the baseline; (2) assisted by a more concise workflow,
OS-specific deployment tool, and smaller module size, TinyEdge has a faster deployment process.

Application-level customization. Similar to system-level customization, we abstract
application-level customization into three stages, module function call (including necessary con-
nection set-up, functional operations, and so on), message routing (defining interactions between
modules both on edge and cloud), and serverless code (other supplementary logic that is beyond
the capability of the selected modules). Figure 7(b) shows the lines of code comparison of four edge
platforms.

We can see that the lines of code are greatly reduced with TinyEdge. The main reason is that
TinyEdge wraps up module function call and message routing into a much simpler form, while
users still need to write codes to accomplish the same functionality when using other platforms. For
example, message routing in Azure IoT Edge requires users to configure each routing destination
that has about 20 lines of extra code for each module. Moreover, the baseline platforms require
users to follow different processes and use various methods to call distinct modules’ functionality,
which leads to a much steeper learning curve than TinyEdge.

In summary, TinyEdge can achieve rapid customization at both systems- and application-level.
There are, however, situations that our current system cannot well support. For example, our sys-
tem cannot be directly used in MEC with requirements to configure many parameters in the com-
munication stack. Regarding this issue, developers can still benefit from our system. Following
our system framework, developers can provide necessary modules in MEC by wrapping essential
functions and the corresponding runtime into docker images and exposing necessary APIs, config-
urations, and performance models. Our system can then provide customization and performance
estimation services by integrating their modules into our framework.

7.3 Performance Estimation Related Results

In this subsection, we carry out experiments to evaluate the performance of TinyEdge workload
and latency models.

Preliminaries. Before the evaluation results, we first present the basic setup of the experiments.
(1) Baseline models. Considering the limited resources available on edge devices, and it’s quite

hard to get thousands of training samples under different hardware specifications, we only in-
clude traditional machine learning models rather than deep neural networks that are popular in
recent years. At the current stage, we compare TinyEdge with three traditional algorithms: linear
regression, SVM, and random forest.
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Fig. 8. Performance modeling methods comparison.

(2) Data collection. To get enough sampling data under different hardware specifications, we
use a CPU frequency scaling tool called cpupower [67] to alter CPU frequency, use a network
emulator NetEm [49] to adjust network speed, and write a script to generate different workloads.
We’ve also set various resource limitation strategies like cpuQuota, and memoryLimit in Docker
to simulate different resource conditions. We sample data under each condition several times and
get the average to reduce variance. Finally, we’ve obtained around 1.5 k for training and 0.5 k for
testing in each case.

Performance model comparison. We build models for processing and connecting modules
of all three cases. The overall mean absolute error rate for the workload and latency model is 0.83%
and 15.47% respectively.

(1) Workload models. Figure 8(a) shows the comparison results of TinyEdge workload model
and other baseline models. The results indicate that TinyEdge, SVM, and Random Forest perform
well as the workload model (whose output is mainly CPU utilization) has a small variation under
different settings and makes it more predictable. While the linear regression performs poorly be-
cause when the workload reaches the bottleneck, it’s hard to get more CPU shares for the lack of
resources. Note that for the workload model, TinyEdge uses a function selector to choose the best
one as its backbone algorithm, so it will obviously perform better than the baseline.

(2) Latency models. Figure 8(b) shows the comparison results of TinyEdge latency model
and other baseline models. The results indicate that TinyEdge performs obviously better than
other baseline models mainly because TinyEdge not only considers the deep-down mechanisms
for both processing and connecting modules using a more realistic queuing model but also
leverages a certain amount of sampled data to build a machine learning model to compensate
the variation under different settings. While the baseline models perform not so well because
(1) the correlations of input features and latency are too complex to model using simple mod-
els; (2) the sampled data may not be sufficient enough to fully unveil the potential of black-box
methods.

7.4 System Optimization Related Results

In this section, we present the benefits of a series of optimization techniques TinyEdge adopts.
Dependency checking efficiency. As TinyEdge is still in the primary stage of development,

the modules and their dependency are not sufficient enough to run a thorough experiment, so
we carry out a simulation with 500 simple dependent modules (no module versioning included)
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Fig. 9. Dependency and topic generation evaluation results.

Table 2. Module Size Before and After Compaction

and apply three circular dependency detection algorithms. Figure 9(a) gives the comparison result,
which shows that the TinyEdge hybrid approach performs better than the other two methods,
considering the dynamics of edge systems update.

Module compaction. In order to evaluate the efficiency of module compaction techniques
TinyEdge adopts, we build two sets of modules for the above three cases, and compared the ul-
timate module size before (marked as “Original” in Table 2) and after (marked as “Optimized” in
Table 2) module compaction. Results show that the module compaction techniques can efficiently
reduce the module size with an average of 58.89%.

Dynamic topic generation. For the lack of current cases, we also carry out simulations to jus-
tify the efficiency of TinyEdge dynamic topic generation technique. We manually generate 1–64
topics and measure the throughput of producer and consumer, as well as their resource consump-
tion. We can see from Figure 9(b) and (c) that as the number of topics goes up, the throughput of
both producer and consumer drop rapidly, and the memory and storage consumption gradually go
up. Under current combinations of TinyEdge modules, we find out that the total number of topics
can be reduced by around 20%, which, as a result, will improve the throughput of the message
queue engine and reduce the resource consumption proportionally.
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Fig. 10. System overhead comparison.

7.5 System Overhead

In this subsection, we will evaluate the overhead of TinyEdge in terms of backbone container
engine and runtime.

The overhead of the Docker backbone of TinyEdge. A decoupled system may suffer per-
formance degradation compared with a monolithic one. Previous works have proved that the per-
formance of Docker is not only acceptable in comparison to native code but also better off than
other alternatives like KVM, Xen, and LXC in general cases [19, 39, 57, 58, 62]. To further justify
the overhead of Docker, we deploy EI customized by TinyEdge and the original EI on two different
edge platforms: one equips a 2.9 GHz CPU with 4 cores and 8 threads (Hardware 1), and another
equips a 3.4 GHz CPU with 6 cores and 12 threads (Hardware 2). We use the maximum throughput
as a micro-benchmark to evaluate the overhead. Figure 10(a) shows the comparison.

Results show that performance degradation exists and it is closely related to computing power.
When the computing power is relatively limited, monolithic and modular implementations have
similar performance; as the computing power gets larger, the degradation becomes eminent. We
further implement EI with 2 and 3 replicas. We can see that their maximum throughput outper-
forms that of the monolithic implementation. We think stringent resources limit the full potential
of both monolithic and modular implementations; this phenomenon is more obvious in the mono-
lithic setting. Although modular implementation suffers from interactions overhead, it is easier to
extend and migrate.

The overhead of TinyEdge runtime. Lastly, we evaluate the minimal resource consumption
of runtime among TinyEdge, EdgeX, Azure IoT Edge, and KubeEdge in terms of CPU, memory,
and storage. We use the same edge device, carrying out the measurement separately several times,
and give the average result in Figure 10(b). We can see that TinyEdge basically achieves the lowest
runtime overhead in comparison to other baselines.

8 CONCLUSION

In this article, we present TinyEdge, a holistic framework to support rapid edge system customiza-
tion for IoT applications. TinyEdge uses a top-down approach to software design. Users only
need to select and configure modules of an edge system and specify critical interaction logic with
TinyEdge DSL, without worrying about the underlying hardware. TinyEdge takes the configura-
tion as input and automatically generates the deployment package as well as the performance
models after sufficient profiling. We implement TinyEdge and evaluate its performance using
benchmarks and three real-world case studies. Results show that TinyEdge achieves rapid cus-
tomization of edge systems, reducing 44.15% of customization time and 67.79% of lines of code on
average while giving accurate performance estimation.
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